| dc.contributor.author | Cueto Avellaneda, María | |
| dc.contributor.author | Peralta Pereira, Antonio Miguel | |
| dc.date.accessioned | 2022-06-21T11:27:04Z | |
| dc.date.available | 2022-06-21T11:27:04Z | |
| dc.date.issued | 2021-10-21 | |
| dc.identifier.citation | Published version: María Cueto-Avellaneda... [et al.] (2022) Exploring new solutions to Tingley’s problem for function algebras, Quaestiones Mathematicae, DOI: [10.2989/16073606.2022.2072787] | es_ES |
| dc.identifier.uri | http://hdl.handle.net/10481/75586 | |
| dc.description.abstract | In this note we present two new positive answers to Tingley's problem in certain subspaces of function algebras. In the first result we prove that every surjective isometry between the unit spheres, S(A) and S(B), of two uniformly closed function algebras A and B on locally compact Hausdorff spaces can be extended to a surjective real linear isometry from A onto B. In a second part we study surjective isometrics between the unit spheres of two abelian JB*-triples represented as spaces of continuous functions of the form
C-0(T)(X) := { a is an element of C-0(X) : a(lambda t) = lambda a(t) for every (lambda,t) is an element of T x X},
where X is a (locally compact Hausdorff) principal T-bundle and T denotes the unit sphere of C. We establish that every surjective isometry Delta : S(C-0(T) (X)) -> -S(C-0(T)(Y)) admits an extension to a surjective real linear isometry between these two abelian JB*-triples. | es_ES |
| dc.description.sponsorship | UK Research & Innovation (UKRI) | es_ES |
| dc.description.sponsorship | Engineering & Physical Sciences Research Council (EPSRC) EP/R044228/1 | es_ES |
| dc.description.sponsorship | Spanish Government | es_ES |
| dc.description.sponsorship | European Commission PGC2018-093332-B-I00 | es_ES |
| dc.description.sponsorship | Junta de Andalucia FQM375
A-FQM-242-UGR18
PY20 00255
CEX2020-001105-M/AEI/10.13039/501100011033 | es_ES |
| dc.description.sponsorship | Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)
Japan Society for the Promotion of Science | es_ES |
| dc.description.sponsorship | Grants-in-Aid for Scientific Research (KAKENHI) PGC2018-093332-B-I00
JP 20K03650
MCIN/AEI/10 | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Taylor & Francis | es_ES |
| dc.rights | Atribución 3.0 España | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
| dc.subject | Isometry | es_ES |
| dc.subject | Tingley's problem | es_ES |
| dc.subject | Uniformly closed function algebras | es_ES |
| dc.subject | Abelian JB*-triples | es_ES |
| dc.title | Exploring new solutions to Tingley's problem for function algebras | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.type.hasVersion | SMUR | es_ES |