Mostrar el registro sencillo del ítem
Hilbert Space Structure of the Low Energy Sector of U(N) Quantum Hall Ferromagnets and Their Classical Limit
dc.contributor.author | Calixto Molina, Manuel | |
dc.contributor.author | Mayorgas Reyes, Alberto | |
dc.contributor.author | Guerrero, Julio | |
dc.date.accessioned | 2022-06-15T09:07:59Z | |
dc.date.available | 2022-06-15T09:07:59Z | |
dc.date.issued | 2022-04-24 | |
dc.identifier.citation | Calixto, M.; Mayorgas, A.; Guerrero, J. Hilbert Space Structure of the Low Energy Sector of U(N) Quantum Hall Ferromagnets and Their Classical Limit. Symmetry 2022, 14, 872. [https://doi.org/10.3390/sym14050872] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/75504 | |
dc.description.abstract | Using the Lieb–Mattis ordering theorem of electronic energy levels, we identify the Hilbert space of the low energy sector of U(N) quantum Hall/Heisenberg ferromagnets at filling factor M for L Landau/lattice sites with the carrier space of irreducible representations of U(N) described by rectangular Young tableaux of M rows and L columns, and associated with Grassmannian phase spaces U(N)~U(M) × U(N − M). We embed this N-component fermion mixture in Fock space through a Schwinger–Jordan (boson and fermion) representation of U(N)-spin operators. We provide different realizations of basis vectors using Young diagrams, Gelfand–Tsetlin patterns and Fock states (for an electron/flux occupation number in the fermionic/bosonic representation). U(N)-spin operator matrix elements in the Gelfand–Tsetlin basis are explicitly given. Coherent state excitations above the ground state are computed and labeled by complex (N −M) ×M matrix points Z on the Grassmannian phase space. They adopt the form of a U(N) displaced/rotated highest-weight vector, or a multinomial Bose–Einstein condensate in the flux occupation number representation. Replacing U(N)-spin operators by their expectation values in a Grassmannian coherent state allows for a semi-classical treatment of the low energy (long wavelength) U(N)-spin-wave coherent excitations (skyrmions) of U(N) quantum Hall ferromagnets in terms of Grasmannian nonlinear sigma models. | es_ES |
dc.description.sponsorship | Spanish Government PGC2018-097831-BI00 | es_ES |
dc.description.sponsorship | Junta de Andalucia SOMM17/6105/UGR UHU-1262561 FQM-381 FEDER/UJA-1381026 | es_ES |
dc.description.sponsorship | Spanish MIU predoctoral fellowship FPU19/06376 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | N-component fermion mixtures | es_ES |
dc.subject | Quantum Hall ferromagnets | es_ES |
dc.subject | Unitary group representations | es_ES |
dc.subject | Boson Schwinger-Jordan realizations | es_ES |
dc.subject | Young tableaux | es_ES |
dc.subject | Lieb-Mattis theorem | es_ES |
dc.subject | Grassmannian sigma models | es_ES |
dc.title | Hilbert Space Structure of the Low Energy Sector of U(N) Quantum Hall Ferromagnets and Their Classical Limit | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3390/sym14050872 | |
dc.type.hasVersion | VoR | es_ES |