Mostrar el registro sencillo del ítem
Wind and Turbulence Statistics in the Urban Boundary Layer over a Mountain–Valley System in Granada, Spain
dc.contributor.author | Ortiz Amezcua, Pablo | |
dc.contributor.author | Guerrero Rascado, Juan Luis | |
dc.contributor.author | Alados Arboledas, Lucas | |
dc.date.accessioned | 2022-06-15T08:41:55Z | |
dc.date.available | 2022-06-15T08:41:55Z | |
dc.date.issued | 2022-05-11 | |
dc.identifier.citation | Ortiz-Amezcua, P... [et al.]. Wind and Turbulence Statistics in the Urban Boundary Layer over a Mountain–Valley System in Granada, Spain. Remote Sens. 2022, 14, 2321. [https://doi.org/10.3390/rs14102321] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/75501 | |
dc.description.abstract | Urban boundary layer characterization is currently a challenging and relevant issue, because of its role in weather and air quality modelling and forecast. In many cities, the effect of complex topography at local scale makes this modelling even more complicated. This is the case of mid-latitude urban areas located in typical basin topographies, which usually present low winds and high turbulence within the atmospheric boundary layer (ABL). This study focuses on the analysis of the first ever measurements of wind with high temporal and vertical resolution throughout the ABL over a medium-sized city surrounded by mountains in southern Spain. These measurements have been gathered with a scanning Doppler lidar system and analyzed using the Halo lidar toolbox processing chain developed at the Finnish Meteorological Institute. We have used the horizontal wind product and the ABL turbulence classification product to carry out a statistical study using a two-year database. The data availability in terms of maximum analyzed altitudes for statistically significant results was limited to around 1000–1500mabove ground level (a.g.l.) due to the decreasing signal intensity with height that also depends on aerosol load. We have analyzed the differences and similarities in the diurnal evolution of the horizontal wind profiles for different seasons and their modelling with Weibull and von Mises probability distributions, finding a general trend of mean daytime wind from the NW with mean speeds around 3–4 m/s at low altitudes and 6–10 m/s at higher altitudes, and weaker mean nocturnal wind from the SE with similar height dependence. The highest speeds were observed during spring, and the lowest during winter. Finally, we studied the turbulent sources at the ABL with temporal (for each hour of the day) and height resolution. The results show a clear convective activity during daytime at altitudes increasing with time, and a significant wind-shear-driven turbulence during night-time. | es_ES |
dc.description.sponsorship | Spanish Government FPU14/03684 | es_ES |
dc.description.sponsorship | Ministerio de Asusntos Economicos y Transformacion Digital CGL2016-81092-R CGL2017-83538-C3-1-R CGL2017-90884-REDT PID2020-120015RB-I00 PID2020.117825GB.C21 | es_ES |
dc.description.sponsorship | Junta de Andalucia A-RNM-430-UGR20 P18-RT-3820 P20-00136 | es_ES |
dc.description.sponsorship | Horizon 2020 Framework Programme of the European Union 654109 | es_ES |
dc.description.sponsorship | European Cooperation in Science and Technology (COST) ES1303 CA18235 | es_ES |
dc.description.sponsorship | Erasmus + Programme of the European Union | es_ES |
dc.description.sponsorship | Fundacion Ramon Areces | es_ES |
dc.description.sponsorship | Polish National Science Centre (NCN) 2021/40/C/ST10/00023 | es_ES |
dc.description.sponsorship | Excellence Units Program of the University of Granada 'Programa 7' of 'Plan Propio' of the University of Granada | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Doppler lidar | es_ES |
dc.subject | Wind | es_ES |
dc.subject | Turbulence | es_ES |
dc.subject | Urban boundary layer | es_ES |
dc.title | Wind and Turbulence Statistics in the Urban Boundary Layer over a Mountain–Valley System in Granada, Spain | es_ES |
dc.type | journal article | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/654109 | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3390/rs14102321 | |
dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.