Transport Equation for Small Systems and Nonadditive Entropy
Metadata
Show full item recordAuthor
Megías Fernández, EugenioEditorial
MDPI
Materia
Transport equation Nonextensive statistics Phase space
Date
2022-05-10Referencia bibliográfica
Megías, E.; Lima, J.A.S.; Deppman, A. Transport Equation for Small Systems and Nonadditive Entropy. Mathematics 2022, 10, 1625. [https://doi.org/10.3390/math10101625]
Sponsorship
Project Instituto Nacional de Ciencia e Tecnologia-Fisica Nuclear Aplicada INCT-FNA 464898/2014-5; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) 304244/2018-0; Project INCT-FNA 464 898/20145; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 2016/17612-7 MCIN/AEI PID2020114767GB-I00; FEDER/Junta de AndaluciaConsejeria de Economia y Conocimiento 2014-2020 Operational Program A-FQM178UGR18; Junta de Andalucia FQM-225; European Commission SOMM17/6105/UGR; Ramon y Cajal Program of the Spanish MCIN RYC-2016-20678; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) 310038/2019-7; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) 88881.068485/2014; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 11/51676-9Abstract
The nonadditive entropy introduced by Tsallis in 1988 has been used in different fields
and generalizes the Boltzmann entropy, extending the possibilities of the application of the statistical
methods developed in the context of Mechanics. Here, we investigate one of the last points of the
theory that is still under discussion: the source term of the nonextensive transport equation. Based on
a simple system, we show that the nonadditivity is a direct consequence of the phase space topology
and derive the source term that leads to the nonextensive transport equation.