Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz García, José Ángel 
dc.contributor.authorRuiz Jiménez, María Dolores 
dc.contributor.authorMartín Bautista, María José 
dc.date.accessioned2022-05-31T10:33:12Z
dc.date.available2022-05-31T10:33:12Z
dc.date.issued2022-05-12
dc.identifier.citationDiaz-Garcia, J.A., Ruiz, M.D. & Martin-Bautista, M.J. A survey on the use of association rules mining techniques in textual social media. Artif Intell Rev (2022). [https://doi.org/10.1007/s10462-022-10196-3]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/75136
dc.descriptionThe research reported in this paper was partially supported by the COPKIT project under the European Union's Horizon 2020 research and innovation program (grant agreement No 786687), the Andalusian government and the FEDER operative program under the project BigDataMed (P18-RT-2947 and B-TIC-145-UGR18). Finally the project is also partially supported by the Spanish Ministry of Education, Culture and Sport (FPU18/00150).es_ES
dc.description.abstractThe incursion of social media in our lives has been much accentuated in the last decade. This has led to a multiplication of data mining tools aimed at obtaining knowledge from these data sources. One of the greatest challenges in this area is to be able to obtain this knowledge without the need for training processes, which requires structured information and pre-labelled datasets. This is where unsupervised data mining techniques come in. These techniques can obtain value from these unstructured and unlabelled data, providing very interesting solutions to enhance the decision-making process. In this paper, we first address the problem of social media mining, as well as the need for unsupervised techniques, in particular association rules, for its treatment. We follow with a broad overview of the applications of association rules in the domain of social media mining, specifically, their application to the problems of mining textual entities, such as tweets. We also focus on the strengths and weaknesses of using association rules for solving different tasks in textual social media. Finally, the paper provides a perspective overview of the challenges that association rules must face in the next decade within the field of social media mining.es_ES
dc.description.sponsorshipCOPKIT project under the European Union's Horizon 2020 research and innovation program 786687es_ES
dc.description.sponsorshipAndalusian governmentes_ES
dc.description.sponsorshipFEDER operative program under the project BigDataMed P18-RT-2947 B-TIC-145-UGR18es_ES
dc.description.sponsorshipSpanish Government FPU18/00150es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectSocial media mininges_ES
dc.subjectAssociation ruleses_ES
dc.subjectText mininges_ES
dc.subjectSocial networks es_ES
dc.titleA survey on the use of association rules mining techniques in textual social mediaes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/786687es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s10462-022-10196-3
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España