Show simple item record

dc.contributor.authorGálvez López, José Antonio
dc.identifier.citationGálvez, J.A., Mira, P. & Tassi, M.P. A quasiconformal Hopf soap bubble theorem. Calc. Var. 61, 129 (2022). []es_ES
dc.descriptionThis research has been financially supported by: Projects PID2020-118137GB-I00 and CEX2020-001105-M, funded by MCIN/AEI/10.13039/501100011033; Junta de Andalucia Grants no. A-FQM-139-UGR18 and P18-FR-4049; and Grant no. 2020/03431-6, Sao Paulo Research Foundation (FAPESP).es_ES
dc.description.abstractWe showthat any compact surface of genus zero inR3 that satisfies a quasiconformal inequality between its principal curvatures is a round sphere. This solves an old open problem by H. Hopf, and gives a spherical version of Simon’s quasiconformal Bernstein theorem. The result generalizes, among others, Hopf’s theorem for constant mean curvature spheres, the classification of round spheres as the only compact ellipticWeingarten surfaces of genus zero, and the uniqueness theorem for ovaloids by Han, Nadirashvili and Yuan. The proof relies on the Bers-Nirenberg representation of solutions to linear elliptic equations with discontinuous coefficients.es_ES
dc.description.sponsorshipMCIN/AEI PID2020-118137GB-I00 CEX2020-001105-Mes_ES
dc.description.sponsorshipJunta de Andalucia A-FQM-139-UGR18 P18-FR-4049es_ES
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 2020/03431-6es_ES
dc.rightsAtribución 3.0 España*
dc.titleA quasiconformal Hopf soap bubble theoremes_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España