Mostrar el registro sencillo del ítem

dc.contributor.authorLiu, Xiaoyan
dc.contributor.authorFujita, Hamido 
dc.date.accessioned2022-05-24T06:30:38Z
dc.date.available2022-05-24T06:30:38Z
dc.date.issued2021-11-29
dc.identifier.citationXiaoyan Liu... [et al.]. "Mining Temporal Association Rules with Temporal Soft Sets", Journal of Mathematics, vol. 2021, Article ID 7303720, 17 pages, 2021. [https://doi.org/10.1155/2021/7303720]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/74956
dc.descriptionThis work was partially supported by the National Natural Science Foundation of China (grant no. 11301415), the Shaanxi Provincial Key Research and Development Program (grant no. 2021SF-480), and the Natural Science Basic Research Plan in Shaanxi Province of China (grant no. 2018JM1054).es_ES
dc.description.abstractTraditional association rule extraction may run into some difficulties due to ignoring the temporal aspect of the collected data. Particularly, it happens in many cases that some item sets are frequent during specific time periods, although they are not frequent in the whole data set. In this study, we make an effort to enhance conventional rule mining by introducing temporal soft sets. We define temporal granulation mappings to induce granular structures for temporal transaction data. Using this notion, we define temporal soft sets and their Q-clip soft sets to establish a novel framework for mining temporal association rules. A number of useful characterizations and results are obtained, including a necessary and sufficient condition for fast identification of strong temporal association rules. By combining temporal soft sets with NegNodeset-based frequent item set mining techniques, we develop the negFIN-based soft temporal association rule mining (negFIN-STARM) method to extract strong temporal association rules. Numerical experiments are conducted on commonly used data sets to show the feasibility of our approach. Moreover, comparative analysis demonstrates that the newly proposed method achieves higher execution efficiency than three well-known approaches in the literature.es_ES
dc.description.sponsorshipNational Natural Science Foundation of China (NSFC) 11301415es_ES
dc.description.sponsorshipShaanxi Provincial Key Research and Development Program 2021SF-480es_ES
dc.description.sponsorshipNatural Science Basic Research Plan in Shaanxi Province of China 2018JM1054es_ES
dc.language.isoenges_ES
dc.publisherHindawies_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleMining Temporal Association Rules with Temporal Soft Setses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1155/2021/7303720
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España