Mostrar el registro sencillo del ítem
Functional Enrichment Analysis of Regulatory Elements
dc.contributor.author | García Moreno, Adrián | |
dc.contributor.author | López Domínguez, Raúl | |
dc.contributor.author | Villatoro García, Juan Antonio | |
dc.contributor.author | Ramírez Mena, Alberto | |
dc.contributor.author | Aparicio Puerta, Ernesto Luis | |
dc.contributor.author | Hackenberg, Michael | |
dc.contributor.author | Carmona Sáez, Pedro | |
dc.date.accessioned | 2022-04-20T08:50:15Z | |
dc.date.available | 2022-04-20T08:50:15Z | |
dc.date.issued | 2022-03-03 | |
dc.identifier.citation | Garcia-Moreno, A... [et al.]. Functional Enrichment Analysis of Regulatory Elements. Biomedicines 2022, 10, 590. [https://doi.org/10.3390/biomedicines10030590] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/74389 | |
dc.description | This work has been partially supported by FEDER/Junta de Andalucia-Consejeria de Economia y Conocimiento/(grant CV20-36723), grant PID2020-119032RB-I00, MCIN/AEI/10.13039/501100011033 and FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades (Grant P20_00335). | es_ES |
dc.description.abstract | Statistical methods for enrichment analysis are important tools to extract biological information from omics experiments. Although these methods have been widely used for the analysis of gene and protein lists, the development of high-throughput technologies for regulatory elements demands dedicated statistical and bioinformatics tools. Here, we present a set of enrichment analysis methods for regulatory elements, including CpG sites, miRNAs, and transcription factors. Statistical significance is determined via a power weighting function for target genes and tested by theWallenius noncentral hypergeometric distribution model to avoid selection bias. These new methodologies have been applied to the analysis of a set of miRNAs associated with arrhythmia, showing the potential of this tool to extract biological information from a list of regulatory elements. These new methods are available in GeneCodis 4, a web tool able to perform singular and modular enrichment analysis that allows the integration of heterogeneous information. | es_ES |
dc.description.sponsorship | FEDER/Junta de Andalucia-Consejeria de Economia y Conocimiento CV20-36723 | es_ES |
dc.description.sponsorship | MCIN/AEI PID2020-119032RB-I00 | es_ES |
dc.description.sponsorship | FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades P20_00335 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Gene set analysis | es_ES |
dc.subject | Regulation | es_ES |
dc.subject | Web tool | es_ES |
dc.subject | Enrichment analysis | es_ES |
dc.subject | Functional analysis | es_ES |
dc.title | Functional Enrichment Analysis of Regulatory Elements | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3390/biomedicines10030590 | |
dc.type.hasVersion | VoR | es_ES |