Mostrar el registro sencillo del ítem

dc.contributor.authorTitos Luzón, Manuel Marcelino 
dc.contributor.authorGarcía Martínez, María Luz 
dc.contributor.authorKowsari, Milad
dc.contributor.authorBenítez Ortúzar, María Del Carmen 
dc.date.accessioned2022-04-05T09:08:18Z
dc.date.available2022-04-05T09:08:18Z
dc.date.issued2022-03-03
dc.identifier.citationM. Titos, L. García, M. Kowsari and C. Benítez, "Toward Knowledge Extraction in Classification of Volcano-Seismic Events: Visualizing Hidden States in Recurrent Neural Networks," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 2311-2325, 2022, [doi: 10.1109/JSTARS.2022.3155967]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/74130
dc.descriptionACKNOWLEDGMENT The authors would like to thank the Instituto Andaluz de Geofísica for providing us with the Decepction Island dataset and invaluable geophysical insight.es_ES
dc.description.abstractUnderstanding how deep hierarchical models build their knowledge is a key issue in the usage of artificial intelligence to interpret the reality behind data. Depending on the discipline and models used, such knowledge may be represented in ways that are more or less intelligible for humans, limiting further improvements on the performance of the existing models. In order to delve into the characterization and modeling of volcano-seismic signals, this article emphasizes the idea of deciphering what and how recurrent neural networks (RNNs) model, and how this knowledge can be used to improve data interpretation.The key to accomplishing these objectives is both analyzing the hidden state dynamics associated with their hidden units as well as pruning/trimming based on the specialization of neurons. In this article, we process, analyze, and visualize the hidden states activation maps of two RNN architectures when managing different types of volcano-seismic events. As a result, the class-dependent discriminative behavior of most active neurons is analyzed, thereby increasing the comprehension of the detection and classification tasks. Arepresentative dataset fromthe deception island volcano (Antarctica), containing volcano-tectonic earthquakes, long period events, volcanic tremors, and hybrid events, is used to train the models. Experimental analysis shows how neural activity and its associated specialization skills change depending on the architecture chosen and the type of event analyzed.es_ES
dc.description.sponsorshipMINECO under Grant PID2019-106260GB-I00 FEMALEes_ES
dc.description.sponsorshipFEDER/Junta de Andalucia-Consejería de Economía y Conocimiento/ Proyecto A-TIC-215- UGR18.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectKnowledge-based systemses_ES
dc.subjectLearning (artificial intelligence)es_ES
dc.subjectSupervised learninges_ES
dc.subjectMachine learninges_ES
dc.subjectDeep learninges_ES
dc.subjectRepresentation learninges_ES
dc.subjectPattern analysises_ES
dc.subjectSeismology es_ES
dc.subjectVolcanoes es_ES
dc.subjectVolcanic activityes_ES
dc.titleToward Knowledge Extraction in Classification of Volcano-Seismic Events: Visualizing Hidden States in Recurrent Neural Networkses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/JSTARS.2022.3155967
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España