Mostrar el registro sencillo del ítem

dc.contributor.authorAbratenko, P.
dc.contributor.authorGarcía Gámez, Diego 
dc.contributor.authorMicroBooNE Collaboration
dc.date.accessioned2022-03-24T13:45:15Z
dc.date.available2022-03-24T13:45:15Z
dc.date.issued2022-03-01
dc.identifier.citationPublished version: The MicroBooNE Collaboration... [et al.], 2021 JINST 16 T12017. [10.1088/1748-0221/16/12/T12017]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/73735
dc.descriptionThis document was prepared by the MicroBooNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. MicroBooNE is supported by the following: the U.S. Department of Energy, Office of Science, Offices of High Energy Physics and Nuclear Physics; the U.S. National Science Foundation; the Swiss National Science Foundation; the Science and Technology Facilities Council (STFC), part of the United Kingdom Research and Innovation; the Royal Society (United Kingdom); and The European Union's Horizon 2020 Marie Sklodowska-Curie Actions. Additional support for the laser calibration system and cosmic ray tagger was provided by the Albert Einstein Center for Fundamental Physics, Bern, Switzerland.es_ES
dc.description.abstractThis article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two nu(mu)-sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff.es_ES
dc.description.sponsorshipFermi Research Alliance, LLC (FRA) DE-AC02-07CH11359es_ES
dc.description.sponsorshipUnited States Department of Energy (DOE) National Science Foundation (NSF)es_ES
dc.description.sponsorshipSwiss National Science Foundation (SNSF)es_ES
dc.description.sponsorshipEuropean Commissiones_ES
dc.description.sponsorshipScience and Technology Facilities Council (STFC) , part of the United Kingdom Research and Innovationes_ES
dc.description.sponsorshipRoyal Society of Londones_ES
dc.description.sponsorshipEuropean Union's Horizon 2020 Marie Sklodowska-Curie Actionses_ES
dc.description.sponsorshipAlbert Einstein Center for Fundamental Physics, Bern, Switzerlandes_ES
dc.language.isoenges_ES
dc.publisherInstitute of Physicses_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectNeutrino detectorses_ES
dc.subjectNoble liquid detectors (scintillation, ionization, double-phase)es_ES
dc.subjectTime projection Chambers (TPC)es_ES
dc.subjectPattern recognitiones_ES
dc.subjectCluster findinges_ES
dc.subjectCalibration and fitting methodses_ES
dc.titleElectromagnetic shower reconstruction and energy validation with Michel electrons and pi(0) samples for the deep-learning-based analyses in MicroBooNEes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España