Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Bouzas, Paula 
dc.contributor.authorValderrama Bonnet, Mariano José 
dc.contributor.authorAguilera Del Pino, Ana María 
dc.date.accessioned2022-02-24T12:04:36Z
dc.date.available2022-02-24T12:04:36Z
dc.date.issued2006-09
dc.identifier.citationP.R. Bouzas, M.J. Valderrama, A.M. Aguilera, On the characteristic functional of a doubly stochastic Poisson process: Application to a narrow-band process, Applied Mathematical Modelling, Volume 30, Issue 9, 2006, Pages 1021-1032, ISSN 0307-904X, https://doi.org/10.1016/j.apm.2005.07.005es_ES
dc.identifier.urihttp://hdl.handle.net/10481/73001
dc.description.abstractThe characteristic functional (c.fl.) of a doubly stochastic Poisson process (DSPP) is studied and it provides us the finite dimensional distributions of the process and so its moments. It is also studied the case of a DSPP which intensity is a narrow-band process. The Karhunen–Loève expansion of its intensity is used to obtain the probability distribution function and a decomposition of this Poisson process. The covariance derived from the general c.fl. is applied in this particular DSPP.es_ES
dc.description.sponsorshipProject MTM2004-05992 of Dirección General de Investigación, Ministerio de Ciencia y Tecnologıíaes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/es/*
dc.subjectDoubly stochastic Poisson processes_ES
dc.subjectCharacteristic functionales_ES
dc.subjectNarrow band processes_ES
dc.subjectKarhunen–Loève expansiones_ES
dc.titleOn the characteristic functional of a doubly stochastic Poisson process: Application to a narrow-band processes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.apm.2005.07.005
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-SinDerivadas 3.0 España