Forecasting binary longitudinal data by a functional PC-ARIMA model
Identificadores
URI: http://hdl.handle.net/10481/72990Metadatos
Mostrar el registro completo del ítemEditorial
Elsevier
Materia
Logistic regression Functional principal component analysis ARIMA modelling
Fecha
2008-02-20Referencia bibliográfica
Ana M. Aguilera, Manuel Escabias, Mariano J. Valderrama, Forecasting binary longitudinal data by a functional PC-ARIMA model, Computational Statistics & Data Analysis, Volume 52, Issue 6, 2008, Pages 3187-3197, ISSN 0167-9473, https://doi.org/10.1016/j.csda.2007.09.015
Patrocinador
Projects MTM2007-63793 from Dirección General de Investigación, Ministerio de Educación y Ciencia, Spain and P06-FQM-01470 from Consejería de Innovación Ciencia y Empresa, Junta de Andalucía, SpainResumen
In order to forecast time evolution of a binary response variable from a related continuous time series a functional logit model is proposed. The estimation of this model from discrete time observations of the predictor is solved by using functional principal component analysis and ARIMA modelling of the associated discrete time series of principal components. The proposed model is applied to forecast the risk of drought from El Niño phenomenon.