Afficher la notice abrégée

dc.contributor.authorAguilera Del Pino, Ana María 
dc.contributor.authorAguilera Morillo, María del Carmen
dc.contributor.authorPreda, C
dc.date.accessioned2022-02-18T13:23:30Z
dc.date.available2022-02-18T13:23:30Z
dc.date.issued2016-03
dc.identifier.citationA.M. Aguilera, M.C. Aguilera-Morillo, C. Preda, Penalized versions of functional PLS regression, Chemometrics and Intelligent Laboratory Systems, Volume 154, 2016, Pages 80-92, ISSN 0169-7439, https://doi.org/10.1016/j.chemolab.2016.03.013.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/72907
dc.description.abstractLeast squares estimation of the functional linear regression model with scalar response is an ill-posed problem due to the infinite dimension of the functional predictor. Dimension reduction approaches as principal component regression or partial least squares regression are proposed and widely used in applications. In both cases the interpretation of the model could be difficult because of the roughness of the coefficient regression function. In this paper, two penalized estimations of this model based on modifying the partial least squares criterion with roughness penalties for the weight functions are proposed. One introduces the penalty in the definition of the norm in the functional space, and the other one in the cross-covariance operator. A simulation study and several applications on real data show the efficiency of the penalized approaches with respect to the non-penalized ones.es_ES
dc.description.sponsorshipProject P11-FQM-8068 from Consejería de Innovación, Ciencia y Empresa. Junta de Andalucía, Spaines_ES
dc.description.sponsorshipProjects MTM2013-47929-P and MTM 2011-28285-C02-C2 from Secretaría de Estado Investigación, Desarrollo e Innovación, Ministerio de Economía y Competitividad, Spain, and by Fondo Europeo de Desarrollo Regional (FEDER)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/es/*
dc.subjectPLSes_ES
dc.subjectFunctional dataes_ES
dc.subjectPenalized splineses_ES
dc.subjectBasis representationes_ES
dc.titlePenalized versions of functional PLS regressiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.chemolab.2016.03.013
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-SinDerivadas 3.0 España