dc.contributor.author | Marriaga, Misael E. | |
dc.contributor.author | Pérez Fernández, Teresa Encarnación | |
dc.contributor.author | Piñar González, Miguel Ángel | |
dc.date.accessioned | 2022-02-04T11:11:21Z | |
dc.date.available | 2022-02-04T11:11:21Z | |
dc.date.issued | 2021-10-03 | |
dc.identifier.citation | Marriaga, M.E., Pérez, T.E. & Piñar, M.A. Bivariate Koornwinder–Sobolev Orthogonal Polynomials. Mediterr. J. Math. 18, 234 (2021). [https://doi.org/10.1007/s00009-021-01875-6] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/72667 | |
dc.description | Mathematics Subject Classification. 42C05, 33C50. | es_ES |
dc.description | The authors are grateful to the referee for his/her valuable comments and
careful reading, which allowed us to improve this paper. The work of the first
author (MEM) has been supported by Ministerio de Ciencia, Innovaci´on y
Universidades (MICINN) grant PGC2018-096504-B-C33. Second and third
authors (TEP and MAP) thank FEDER/Ministerio de Ciencia, Innovaci´on
y Universidades—Agencia Estatal de Investigaci´on/PGC2018-094932-B-I00
and Research Group FQM-384 by Junta de Andaluc´ıa. This work is supported
in part by the IMAG-Mar´ıa de Maeztu grant CEX2020-001105-M/AEI/10.
13039/501100011033. | es_ES |
dc.description.abstract | The so-called Koornwinder bivariate orthogonal polynomials
are generated by means of a non-trivial procedure involving two families
of univariate orthogonal polynomials and a function ρ(t) such that ρ(t)2
is a polynomial of degree less than or equal to 2. In this paper, we extend
the Koornwinder method to the case when one of the univariate families
is orthogonal with respect to a Sobolev inner product. Therefore, we
study the new Sobolev bivariate families obtaining relations between
the classical original Koornwinder polynomials and the Sobolev one,
deducing recursive methods in order to compute the coefficients. The
case when one of the univariate families is classical is analysed. Finally,
some useful examples are given. | es_ES |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y
Universidades (MICINN) grant PGC2018-096504-B-C33 | es_ES |
dc.description.sponsorship | EDER/Ministerio de Ciencia, Innovación
y Universidades—Agencia Estatal de Investigación/PGC2018-094932-B-I00 | es_ES |
dc.description.sponsorship | Research Group FQM-384 by Junta de Andalucía | es_ES |
dc.description.sponsorship | IMAG-María de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033 | es_ES |
dc.description.sponsorship | Universidad de Granada/CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Bivariate orthogonal polynomials | es_ES |
dc.subject | Sobolev orthogonal polynomials | es_ES |
dc.title | Bivariate Koornwinder–Sobolev Orthogonal Polynomials | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.identifier.doi | 10.1007/s00009-021-01875-6 | |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es_ES |