Show simple item record

dc.contributor.authorMarriaga, Misael E.
dc.contributor.authorPérez Fernández, Teresa Encarnación 
dc.contributor.authorPiñar González, Miguel Ángel
dc.identifier.citationMarriaga, M.E., Pérez, T.E. & Piñar, M.A. Bivariate Koornwinder–Sobolev Orthogonal Polynomials. Mediterr. J. Math. 18, 234 (2021). []es_ES
dc.descriptionMathematics Subject Classification. 42C05, 33C50.es_ES
dc.descriptionThe authors are grateful to the referee for his/her valuable comments and careful reading, which allowed us to improve this paper. The work of the first author (MEM) has been supported by Ministerio de Ciencia, Innovaci´on y Universidades (MICINN) grant PGC2018-096504-B-C33. Second and third authors (TEP and MAP) thank FEDER/Ministerio de Ciencia, Innovaci´on y Universidades—Agencia Estatal de Investigaci´on/PGC2018-094932-B-I00 and Research Group FQM-384 by Junta de Andaluc´ıa. This work is supported in part by the IMAG-Mar´ıa de Maeztu grant CEX2020-001105-M/AEI/10. 13039/501100011033.es_ES
dc.description.abstractThe so-called Koornwinder bivariate orthogonal polynomials are generated by means of a non-trivial procedure involving two families of univariate orthogonal polynomials and a function ρ(t) such that ρ(t)2 is a polynomial of degree less than or equal to 2. In this paper, we extend the Koornwinder method to the case when one of the univariate families is orthogonal with respect to a Sobolev inner product. Therefore, we study the new Sobolev bivariate families obtaining relations between the classical original Koornwinder polynomials and the Sobolev one, deducing recursive methods in order to compute the coefficients. The case when one of the univariate families is classical is analysed. Finally, some useful examples are given.es_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (MICINN) grant PGC2018-096504-B-C33es_ES
dc.description.sponsorshipEDER/Ministerio de Ciencia, Innovación y Universidades—Agencia Estatal de Investigación/PGC2018-094932-B-I00es_ES
dc.description.sponsorshipResearch Group FQM-384 by Junta de Andalucíaes_ES
dc.description.sponsorshipIMAG-María de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 3.0 España*
dc.subjectBivariate orthogonal polynomialses_ES
dc.subjectSobolev orthogonal polynomialses_ES
dc.titleBivariate Koornwinder–Sobolev Orthogonal Polynomialses_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España