Mostrar el registro sencillo del ítem

dc.contributor.authorPovedano Priego, Cristina 
dc.contributor.authorJroundi, Fadwa 
dc.contributor.authorMorales Hidalgo, Mar 
dc.contributor.authorMartín Sánchez, Inés 
dc.contributor.authorHuertas Puerta, Francisco Javier
dc.contributor.authorMerroun, Mohamed Larbi 
dc.date.accessioned2021-12-17T09:24:11Z
dc.date.available2021-12-17T09:24:11Z
dc.date.issued2021-11-22
dc.identifier.citationCristina Povedano-Priego... [et al.]. Impact of anoxic conditions, uranium(VI) and organic phosphate substrate on the biogeochemical potential of the indigenous bacterial community of bentonite, Applied Clay Science, Volume 216, 2022, 106331, ISSN 0169-1317, [https://doi.org/10.1016/j.clay.2021.106331]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/72108
dc.descriptionThis work was funded by the ERDF-financed Grant CGL2014-59616-R (80% funding by FEDER) , (Ministerio de Ciencia e Innovacion, Espana) as well as by an FPU 14/04263 ("Formacion de Profesorado Universitario") grant to the first author from the Spanish Ministry (Ministerio de Educacion Cultura y Deporte, MECD) .es_ES
dc.description.abstractUranium (U) is the most hazardous radionuclide in nuclear waste and its harmful effects depend on its mobility and bioavailability. Microorganisms can affect the speciation of radionuclides and their migration in Deep Geological Repositories (DGR) for high level radioactive waste (HLW) storage. Consequently, a better understanding of microbe-radionuclide interactions within a DGR concept is essential for a safe storage. With that in mind, bentonite microcosms amended with uranyl nitrate and glycerol-2-phosphate were incubated for six months under anoxic conditions. Post-incubation 16S rRNA gene sequencing revealed high microbial diversities including glycerol oxidizers such as Clostridium and Desulfovibrio and nitrate reducers (Limnobacter and Brevundimonas). In addition, uranium-reducing bacteria (Desulfovibrio and Pseudomonas) were highly enriched in glycerol-2-phosphate‑uranium amended microcosms. These bacteria may contribute to uranium immobilization through enzymatic reduction and/or biomineralization. Scanning electron microscopy of colored spots on the surface of the bentonite in the microcosms indicated the probable formation of Mn(IV) oxides likely through the activity of Mn(II)-oxidizing microbes. This could affect the biogeochemical cycle of U(VI) by concentrating and immobilizing this element in the bentonites. Finally, X-ray diffraction determined a high structural stability of bentonites. The outputs of this study help to predict the impact of microbial activity (e.g. smectite alteration, metal corrosion, and radionuclides mobilization) on the long-term performance of a DGR and to develop appropriate waste treatments, remediation, and management strategies.es_ES
dc.description.sponsorshipEuropean Commission CGL2014-59616-Res_ES
dc.description.sponsorshipGerman Research Foundation (DFG) FPU 14/04263es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBacterial diversityes_ES
dc.subjectDGRes_ES
dc.subjectRadionuclideses_ES
dc.subjectG2Pes_ES
dc.subjectBioreductiones_ES
dc.subjectImmobilizationes_ES
dc.titleImpact of anoxic conditions, uranium(VI) and organic phosphate substrate on the biogeochemical potential of the indigenous bacterial community of bentonitees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.clay.2021.106331
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España