Afficher la notice abrégée

dc.contributor.authorRoldán Aranda, Juan Bautista 
dc.contributor.authorAlonso Morales, Francisco J. 
dc.contributor.authorAguilera Del Pino, Ana María 
dc.contributor.authorMaldonado Correa, David 
dc.contributor.authorLanza, M
dc.date.accessioned2021-11-30T08:29:46Z
dc.date.available2021-11-30T08:29:46Z
dc.date.issued2019-05-03
dc.identifier.citationRoldan, Juan & Alonso, F. & Aguilera, Ana & Maldonado, David & Lanza, Mario. (2019). Time series statistical analysis: A powerful tool to evaluate the variability of resistive switching memories. Journal of Applied Physics. 125. 174504. 10.1063/1.5079409es_ES
dc.identifier.urihttp://hdl.handle.net/10481/71827
dc.description.abstractTime series statistical analyses (TSSA) have been employed to evaluate the variability of resistive switching memories and to model the set and reset voltages for modeling purposes. The conventional procedures behind time series theory have been used to obtain autocorrelation and partial autocorrelation functions and determine the simplest analytical models to forecast the set and reset voltages in a long series of resistive switching processes. To do so, and for the sake of generality in our study, a wide range of devices have been fabricated and measured. Different oxides and electrodes have been employed, including bilayer dielectrics in devices such as Ni/HfO2/Si-n⁺, Cu/HfO2/Si-n⁺, and Au/Ti/TiO2/SiOx/Si-n⁺. The TSSA models obtained allowed one to forecast the reset and set voltages in a series if previous values were known. The study of autocorrelation data between different cycles in the series allows estimating the inertia between cycles in long resistive switching series. Overall, TSSA seems to be a very promising method to evaluate the intrinsic variability of resistive switching memories.es_ES
dc.description.sponsorshipIMB-CNM (CSIC) in Barcelonaes_ES
dc.description.sponsorshipSpanish Ministry of Science, Innovation and Universities TEC2017-84321-C4-3-R, MTM2017-88708-P (also supported by the FEDER program)es_ES
dc.description.sponsorshipSpanish ICTS Network MICRONANOFABSes_ES
dc.language.isoenges_ES
dc.publisherAIP Publishinges_ES
dc.rightsAtribución-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/es/*
dc.subjectResistive switching memoryes_ES
dc.subjectRRAMes_ES
dc.subjectConductive filamentses_ES
dc.subjectVariabilityes_ES
dc.subjectTime series modellinges_ES
dc.subjectAutocovariancees_ES
dc.subjectStationary time serieses_ES
dc.titleTime series statistical analysis: A powerful tool to evaluate the variability of resistive switching memorieses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.identifier.doihttps://doi.org/10.1063/1.5079409
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-SinDerivadas 3.0 España