• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Didáctica de la Matemática Pensamiento numérico (FQM193)
  • FQM193 - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Didáctica de la Matemática Pensamiento numérico (FQM193)
  • FQM193 - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Note for the Third Hilbert Problem: a Fractal Construction

[PDF] 2021_Mathematics Student.pdf (2.397Mb)
Identificadores
URI: http://hdl.handle.net/10481/71646
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Flores Martínez, Pablo; Ramírez Uclés, Rafael
Materia
Hilbert Problem
 
finite equidecomposition
 
tetrahedron
 
fractal
 
Fecha
2021-11
Referencia bibliográfica
Flores, P. y Ramírez, R. (2021). Note for the Third Hilbert Problem: a Fractal Construction The Mathematics Student, 90(3-4), 173-182
Resumen
Hilbert’s Third problem questioned whether, given two polyhedrons with the same volume, it is possible to decompose the first one into a finite number of polyhedral parts that can be put together to yield the second one. This finite equidecomposition process had already been shown to be possible between polygons of the same area. Dehn solved the problem by showing that a regular tetrahedron and a cube with equal volume were not equidecomposable. In this paper, we present an infinite fractal process that allows the cube to be visually reconstructed from a tetrahedron with equal volume. We have proved that, given two tetrahedrons with the same volume, the first one can be decomposed into an infinite number of polyhedral parts that can be put together to yield the second one. This process makes it possible to obtain the volume of a tetrahedron from the volume of the parallelepiped, without the use of formulas or the Cavallieri Principle
Colecciones
  • FQM193 - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias