Afficher la notice abrégée

dc.contributor.authorLuengo Martín, Julián 
dc.contributor.authorSevillano García, Iván 
dc.contributor.authorCharte Luque, Francisco David 
dc.contributor.authorPeláez Vegas, Adrián 
dc.contributor.authorMesejo Santiago, Pablo 
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2021-11-15T10:24:51Z
dc.date.available2021-11-15T10:24:51Z
dc.date.issued2021-09-30
dc.identifier.citationJulián Luengo... [et al.]. A tutorial on the segmentation of metallographic images: Taxonomy, new MetalDAM dataset, deep learning-based ensemble model, experimental analysis and challenges, Information Fusion, Volume 78, 2022, Pages 232-253, ISSN 1566-2535, [https://doi.org/10.1016/j.inffus.2021.09.018]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/71515
dc.descriptionThis publication is supported by ArcelorMittal, Luxembourg Global R&D, specifically the project granted by ArcelorMittal Global R&D Digital Portfolio in collaboration with the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) , University of Granada. This publication is supported by the Andalusian Excel-lence, Spain project P18-FR-4961 and SOMM17/6110/UGR. D. Charte is supported by the Spanish Ministry of Universities, Spain under the FPU program (Ref. FPU17/04069) . Funding for open access charge: Universidad de Granada/CBUA.es_ES
dc.description.abstractImage segmentation is an important issue in many industrial processes, with high potential to enhance the manufacturing process derived from raw material imaging. For example, metal phases contained in microstructures yield information on the physical properties of the steel. Existing prior literature has been devoted to develop specific computer vision techniques able to tackle a single problem involving a particular type of metallographic image. However, the field lacks a comprehensive tutorial on the different types of techniques, methodologies, their generalizations and the algorithms that can be applied in each scenario. This paper aims to fill this gap. First, the typologies of computer vision techniques to perform the segmentation of metallographic images are reviewed and categorized in a taxonomy. Second, the potential utilization of pixel similarity is discussed by introducing novel deep learning-based ensemble techniques that exploit this information. Third, a thorough comparison of the reviewed techniques is carried out in two openly available real-world datasets, one of them being a newly published dataset directly provided by ArcelorMittal, which opens up the discussion on the strengths and weaknesses of each technique and the appropriate application framework for each one. Finally, the open challenges in the topic are discussed, aiming to provide guidance in future research to cover the existing gaps.es_ES
dc.description.sponsorshipArcelorMittal, Luxembourg Global RDes_ES
dc.description.sponsorshipArcelorMittal Global R&D Digital Portfolio in collaboration with the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granadaes_ES
dc.description.sponsorshipAndalusian Excellence, Spain project P18-FR-4961 SOMM17/6110/UGRes_ES
dc.description.sponsorshipSpanish Ministry of Universities, Spain under the FPU program FPU17/04069es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectImage segmentationes_ES
dc.subjectMetallography es_ES
dc.subjectMachine learninges_ES
dc.subjectDeep learninges_ES
dc.subjectMicroscopy imageses_ES
dc.subjectComputer visiones_ES
dc.titleA tutorial on the segmentation of metallographic images: Taxonomy, new MetalDAM dataset, deep learning-based ensemble model, experimental analysis and challengeses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.inffus.2021.09.018
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España