Afficher la notice abrégée

dc.contributor.authorCañizo Rincón, José Alfredo 
dc.date.accessioned2021-11-15T08:13:05Z
dc.date.available2021-11-15T08:13:05Z
dc.date.issued2021-09-16
dc.identifier.citationCañizo, J. A., Gabriel, P., & Yoldas, H. (2021). Spectral gap for the growth-fragmentation equation via Harris's Theorem. SIAM Journal on Mathematical Analysis, 53(5), 5185-5214. DOI. [10.1137/20M1338654]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/71504
dc.descriptionThe work of the first and third authors was supported by the project MTM2017- 85067-P, funded by the Spanish government and the European Regional Development Fund and they gratefully acknowledge the support of the Hausdorff Research Institute for Mathematics (Bonn), through the Junior Trimester Program on Kinetic Theory. The work of the second author was supported by the ANR project NOLO, grant ANR-20-CE40-0015, funded by the French Ministry of Research. The work of the third author was also supported by the Basque Government through the BERC 2018-2021 program, by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2017-0718, by the ``la Caixa"" Foundation, and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant 639638.es_ES
dc.description.abstractWe study the long-time behavior of the growth-fragmentation equation, a nonlocal linear evolution equation describing a wide range of phenomena in structured population dynamics. We show the existence of a spectral gap under conditions that generalize those in the literature by using a method based on Harris's theorem, a result coming from the study of equilibration of Markov processes. The difficulty posed by the nonconservativeness of the equation is overcome by performing an h-transform, after solving the dual Perron eigenvalue problem. The existence of the direct Perron eigenvector is then a consequence of our methods, which prove exponential contraction of the evolution equation. Moreover the rate of convergence is explicitly quantifiable in terms of the dual eigenfunction and the coefficients of the equation.es_ES
dc.description.sponsorshipBERCes_ES
dc.description.sponsorshipFrench Ministry of Researches_ES
dc.description.sponsorshipHausdorff Research Institute for Mathematics ANR-20-CE40-0015es_ES
dc.description.sponsorshipSpanish governmentes_ES
dc.description.sponsorshipEuropean Commission 639638 ECes_ES
dc.description.sponsorshipEuropean Research Counciles_ES
dc.description.sponsorshipMinisterio de Economía y Competitividad ¡SEV-2017-0718 MINECOes_ES
dc.description.sponsorshipEuropean Regional Development Fundes_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectGrowth-fragmentation equationses_ES
dc.subjectHarris's theoremes_ES
dc.subjectSpectral gapes_ES
dc.subjectLong-time behavior of solutionses_ES
dc.subjectStructured population dynamicses_ES
dc.titleSpectral gap for the growth-fragmentation equation via Harris's theoremes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/639638es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1137/20M1338654
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España