Mostrar el registro sencillo del ítem

dc.contributor.authorMartín Doñas, Juan M.
dc.contributor.authorJensen, Jesper
dc.contributor.authorTan, Zheng-Hua
dc.contributor.authorGómez García, Ángel Manuel 
dc.contributor.authorPeinado Herreros, Antonio Miguel 
dc.date.accessioned2021-11-15T08:08:01Z
dc.date.available2021-11-15T08:08:01Z
dc.date.issued2020-11-09
dc.identifier.citationMartín-Doñas, J. M., Jensen, J., Tan, Z. H., Gomez, A. M., & Peinado, A. M. (2020). Online Multichannel Speech Enhancement Based on Recursive EM and DNN-Based Speech Presence Estimation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 3080-3094.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/71502
dc.description.abstractThis article presents a recursive expectation-maximization algorithm for online multichannel speech enhancement. A deep neural network mask estimator is used to compute the speech presence probability, which is then improved by means of statistical spatial models of the noisy speech and noise signals. The clean speech signal is estimated using beamforming, single-channel linear postfiltering and speech presence masking. The clean speech statistics and speech presence probabilities are finally used to compute the acoustic parameters for beamforming and postfiltering by means of maximum likelihood estimation. This iterative procedure is carried out on a frame-by-frame basis. The algorithm integrates the different estimates in a common statistical framework suitable for online scenarios. Moreover, our method can successfully exploit spectral, spatial and temporal speech properties. Our proposed algorithm is tested in different noisy environments using the multichannel recordings of the CHiME-4 database. The experimental results show that our method outperforms other related state-of-the-art approaches in noise reduction performance, while allowing low-latency processing for real-time applications.es_ES
dc.description.sponsorshipSpanish MICINN/FEDER (Grant Number: PID2019-104206GB-I00)es_ES
dc.description.sponsorshipSpanish Ministry of Universities National Program FPU (Grant Number: FPU15/04161)es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectDeep learning (DL)es_ES
dc.subjectSpeech enhancementes_ES
dc.subjectbeamforminges_ES
dc.titleOnline Multichannel Speech Enhancement Based on Recursive EM and DNN-Based Speech Presence Estimationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TASLP.2020.3036776


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España