Mostrar el registro sencillo del ítem

dc.contributor.authorChaparro Garnica, Cristian Yesid
dc.contributor.authorBailón García, Esther 
dc.date.accessioned2021-11-10T10:47:44Z
dc.date.available2021-11-10T10:47:44Z
dc.date.issued2021-08-02
dc.identifier.citationCatal. Sci. Technol., 2021, 11, 6490. [https://doi.org/10.1039/d1cy01104a]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/71412
dc.descriptionThe authors acknowledge the financial support from the Spanish Ministry of Science and Innovation (PID2019-105960RB-C22), the University of Alicante (Project GRE18-01A), the Generalitat Valenciana (Projects PROMETEO/2018/076 and GV2020-075, PhD grant GRISOLIAP/2017/177 and contract APOSTD/2019/030), the Junta de Andalucia (Project P18-RTJ-2974) and the UE (FEDER funding).es_ES
dc.description.abstractA new method to synthesize integral carbon monoliths with a controlled channel morphology has been developed in this work by combining 3D-printing technology and sol–gel polymerization. By this method, robust and consistent carbon monoliths were obtained with a perfect replica of the channel architecture at a microscale range. As a proof of concept, a carbon monolith with tortuous channels that split and join successively along the monolith length has been designed, fabricated and tested as a CuO/CeO2 support for the preferential oxidation of CO in the presence of H2 (CO-PrOx), which is a topic of ongoing research for H2 purification in fuel cells. The behavior of this novel carbon monolith catalyst has been compared with that of a counterpart catalyst prepared with a conventional honeycomb design. Results shown that the wide macroporosity of the carbon network favors the anchoring and dispersion of the active phase both in the channel surface and the carbon network. The channel architecture affects the gas diffusion both through the channel and the carbon network and consequently, affects the active phase accessibility and activity. T50 (the temperature to achieve 50% CO conversion) decreases by almost 13 °C at 240 mL min−1 in the carbon monolith with tortuous channels (T50 = 79.7 °C) compared to the honeycomb monolith (T50 = 93.1 °C). The turbulent path created by the tortuous channels favours the active phase–gas contact and even the gas diffusion inside the macropores of the carbon skeleton improving the catalytic performance of the active phase compared to that by the conventional honeycomb design. Thus, this work demonstrates the potential of 3D printing to improve the catalytic supports currently available.es_ES
dc.description.sponsorshipSpanish Government PID2019-105960RB-C22es_ES
dc.description.sponsorshipUniversity of Alicante GRE18-01Aes_ES
dc.description.sponsorshipGeneralitat Valencianaes_ES
dc.description.sponsorshipEuropean Commissiones_ES
dc.description.sponsorshipGeneral Electric PROMETEO/2018/076 GV2020-075 GRISOLIAP/2017/177 APOSTD/2019/030es_ES
dc.description.sponsorshipJunta de Andalucia P18-RTJ-2974es_ES
dc.description.sponsorshipUE (FEDER funding)es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rightsAtribución-NoComercial 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.titleDesign and fabrication of integral carbon monoliths combining 3D printing and sol-gel polymerization: effect of the channels morphology on the CO-PROX reactiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1039/d1cy01104a
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 3.0 España