Mostrar el registro sencillo del ítem
Identifying and characterizing social media communities: a socio‑semantic network approach to altmetrics
dc.contributor.author | Arroyo Machado, Wenceslao | |
dc.contributor.author | Torres Salinas, Daniel | |
dc.contributor.author | Robinson García, Nicolás | |
dc.date.accessioned | 2021-11-02T12:40:20Z | |
dc.date.available | 2021-11-02T12:40:20Z | |
dc.date.issued | 2021-10-12 | |
dc.identifier.citation | Arroyo-Machado, W., Torres-Salinas, D. & Robinson-Garcia, N. Identifying and characterizing social media communities: a socio-semantic network approach to altmetrics. Scientometrics 126, 9267–9289 (2021). [https://doi.org/10.1007/s11192-021-04167-8] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/71230 | |
dc.description | Funding for open access charge: Universidad de Granada/CBUA. This work has funded by the Spanish Ministry of Science and Innovation grant number PID2019-109127RB-I00/SRA/10.13039/501100011033. Wenceslao Arroyo-Machado has an FPU Grant (FPU18/05835) from the Spanish Ministry of Universities. Daniel Torres-Salinas is supported by the Reincorporation Programme for Young Researchers from the University of Granada. Nicolas Robinson-Garcia is funded by a Ramon y Cajal grant from the Spanish Ministry of Science and Innovation (REF: RYC2019-027886-I). | es_ES |
dc.description.abstract | Altmetric indicators allow exploring and profiling individuals who discuss and share scientific literature in social media. But it is still a challenge to identify and characterize communities based on the research topics in which they are interested as social and geographic proximity also influence interactions. This paper proposes a new method which profiles social media users based on their interest on research topics using altmetric data. Social media users are clustered based on the topics related to the research publications they share in social media. This allows removing linkages which respond to social or personal proximity and identifying disconnected users who may have similar research interests. We test this method for users tweeting publications from the fields of Information Science & Library Science, and Microbiology. We conclude by discussing the potential application of this method and how it can assist information professionals, policy managers and academics to understand and identify the main actors discussing research literature in social media. | es_ES |
dc.description.sponsorship | Spanish Government PID2019-109127RB-I00/SRA/10.13039/501100011033 | es_ES |
dc.description.sponsorship | Spanish Ministry of Universities FPU18/05835 | es_ES |
dc.description.sponsorship | Ramon y Cajal grant from the Spanish Ministry of Science and Innovation REF: RYC2019-027886-I | es_ES |
dc.description.sponsorship | University of Granada | es_ES |
dc.description.sponsorship | Universidad de Granada/CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Network analysis | es_ES |
dc.subject | Socio-semantic networks | es_ES |
dc.subject | Altmetrics | es_ES |
dc.subject | es_ES | |
dc.subject | Information science and library science | es_ES |
dc.subject | Microbiology | es_ES |
dc.title | Identifying and characterizing social media communities: a socio‑semantic network approach to altmetrics | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1007/s11192-021-04167-8 | |
dc.type.hasVersion | VoR | es_ES |