Mostrar el registro sencillo del ítem

dc.contributor.authorArroyo Machado, Wenceslao 
dc.contributor.authorTorres Salinas, Daniel 
dc.contributor.authorRobinson García, Nicolás 
dc.date.accessioned2021-11-02T12:40:20Z
dc.date.available2021-11-02T12:40:20Z
dc.date.issued2021-10-12
dc.identifier.citationArroyo-Machado, W., Torres-Salinas, D. & Robinson-Garcia, N. Identifying and characterizing social media communities: a socio-semantic network approach to altmetrics. Scientometrics 126, 9267–9289 (2021). [https://doi.org/10.1007/s11192-021-04167-8]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/71230
dc.descriptionFunding for open access charge: Universidad de Granada/CBUA. This work has funded by the Spanish Ministry of Science and Innovation grant number PID2019-109127RB-I00/SRA/10.13039/501100011033. Wenceslao Arroyo-Machado has an FPU Grant (FPU18/05835) from the Spanish Ministry of Universities. Daniel Torres-Salinas is supported by the Reincorporation Programme for Young Researchers from the University of Granada. Nicolas Robinson-Garcia is funded by a Ramon y Cajal grant from the Spanish Ministry of Science and Innovation (REF: RYC2019-027886-I).es_ES
dc.description.abstractAltmetric indicators allow exploring and profiling individuals who discuss and share scientific literature in social media. But it is still a challenge to identify and characterize communities based on the research topics in which they are interested as social and geographic proximity also influence interactions. This paper proposes a new method which profiles social media users based on their interest on research topics using altmetric data. Social media users are clustered based on the topics related to the research publications they share in social media. This allows removing linkages which respond to social or personal proximity and identifying disconnected users who may have similar research interests. We test this method for users tweeting publications from the fields of Information Science & Library Science, and Microbiology. We conclude by discussing the potential application of this method and how it can assist information professionals, policy managers and academics to understand and identify the main actors discussing research literature in social media.es_ES
dc.description.sponsorshipSpanish Government PID2019-109127RB-I00/SRA/10.13039/501100011033es_ES
dc.description.sponsorshipSpanish Ministry of Universities FPU18/05835es_ES
dc.description.sponsorshipRamon y Cajal grant from the Spanish Ministry of Science and Innovation REF: RYC2019-027886-Ies_ES
dc.description.sponsorshipUniversity of Granadaes_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectNetwork analysises_ES
dc.subjectSocio-semantic networkses_ES
dc.subjectAltmetricses_ES
dc.subjectTwitteres_ES
dc.subjectInformation science and library sciencees_ES
dc.subjectMicrobiology es_ES
dc.titleIdentifying and characterizing social media communities: a socio‑semantic network approach to altmetricses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s11192-021-04167-8
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España