Mostrar el registro sencillo del ítem
Strongly zero product determined Banach algebras
dc.contributor.author | Alaminos Prats, Jerónimo | |
dc.contributor.author | Extremera Lizana, José | |
dc.contributor.author | Castillo Godoy, María Luisa | |
dc.contributor.author | Villena Muñoz, Armando Reyes | |
dc.date.accessioned | 2021-10-27T08:33:24Z | |
dc.date.available | 2021-10-27T08:33:24Z | |
dc.date.issued | 2021-09-06 | |
dc.identifier.citation | J. Alaminos... [et al.]. Strongly zero product determined Banach algebras, Linear Algebra and its Applications, Volume 630, 2021, Pages 326-354, ISSN 0024-3795, [https://doi.org/10.1016/j.laa.2021.09.002] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/71128 | |
dc.description | The authors were supported by MCIU/AEI/FEDER Grant PGC2018-093794-B-I00, Junta de Andalucia grant FQM-185. The first, second and fourth authors were supported by Proyectos I+D+i del programa operativo FEDER-Andalucia Grant A-FQM-484-UGR18. The third named author was also supported by MIU PhD scholarship Grant FPU18/00419. Funding for open access charge: Universidad de Granada/CBUA. | es_ES |
dc.description.abstract | C*-algebras, group algebras, and the algebra A(X) of approximable operators on a Banach space Xhaving the bounded approximation property are known to be zero product determined. In this paper we give a quantitative estimate of this property by showing that, for the Banach algebra A, there exists a constant awith the property that for every continuous bilinear functional phi: A x A -> C there exists a continuous linear functional xi on A such that sup(parallel to a parallel to=parallel to b parallel to=1) vertical bar phi(a, b) - xi(ab)vertical bar <= alpha sup(parallel to a parallel to=parallel to b parallel to=1ab-0), vertical bar phi(a, b)vertical bar in each of the following cases: (i) Ais a C*-algebra, in which case alpha = 8; (ii) A = L-1(G) for a locally compact group G, in which case alpha = 60 root 271+sin pi/10/1-2sin pi/10; (iii) A = A(X) for a Banach space Xhaving property (A)(which is a rather strong approximation property for X), in which case alpha = 60 root 27 1+sin pi/10/1-2sin pi/10 C-2, where C is a constant associated with the property(A) that we require forX. | es_ES |
dc.description.sponsorship | MCIU/AEI/FEDER Grant PGC2018-093794-B-I00 | es_ES |
dc.description.sponsorship | Junta de Andalucia FQM-185 | es_ES |
dc.description.sponsorship | Proyectos I+D+i del programa operativo FEDER-Andalucia Grant A-FQM-484-UGR18 | es_ES |
dc.description.sponsorship | MIU PhD scholarship Grant FPU18/00419 | es_ES |
dc.description.sponsorship | Universidad de Granada/CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Zero product determined Banach algebra | es_ES |
dc.subject | Group algebra | es_ES |
dc.subject | Algebra of approximable operators | es_ES |
dc.title | Strongly zero product determined Banach algebras | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1016/j.laa.2021.09.002 | |
dc.type.hasVersion | VoR | es_ES |