Mostrar el registro sencillo del ítem

dc.contributor.authorCáceres Granados, María Josefa 
dc.contributor.authorPerthame, Benoît
dc.contributor.authorSalort, Delphine
dc.contributor.authorTorres, Nicolás
dc.date.accessioned2021-10-13T10:38:29Z
dc.date.available2021-10-13T10:38:29Z
dc.date.issued2021-03-19
dc.identifier.citationPublished version: Nicolás Torres... [et al.]. An elapsed time model for strongly coupled inhibitory and excitatory neural networks, Physica D: Nonlinear Phenomena, Volume 425, 2021, 132977, ISSN 0167-2789, [https://doi.org/10.1016/j.physd.2021.132977]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/70824
dc.descriptionThis project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 754362. It has also re-ceived support from ANR, France ChaMaNe No: ANR19CE400024.es_ES
dc.description.abstractThe elapsed time model has been widely studied in the context of mathematical neuroscience with many open questions left. The model consists of an age-structured equation that describes the dynamics of interacting neurons structured by the elapsed time since their last discharge. Our interest lies in highly connected networks leading to strong nonlinearities where perturbation methods do not apply. To deal with this problem, we choose a particular case which can be reduced to delay equations. We prove a general convergence result to a stationary state in the inhibitory and the weakly excitatory cases. Moreover, we prove the existence of particular periodic solutions with jump discontinuities in the strongly excitatory case. Finally, we present some numerical simulations which ilustrate various behaviors, which are consistent with the theoretical results.es_ES
dc.description.sponsorshipEuropean Commission 754362es_ES
dc.description.sponsorshipFrench National Research Agency (ANR) ANR19CE400024es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectStructured equationses_ES
dc.subjectMathematical neurosciencees_ES
dc.subjectNeural networkses_ES
dc.subjectPeriodic solutionses_ES
dc.subjectDelay differential equationses_ES
dc.titleAn elapsed time model for strongly coupled inhibitory and excitatory neural networkses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/754362es_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España