Afficher la notice abrégée

dc.contributor.authorMoreno Frías, María Ángeles
dc.contributor.authorRosales González, José Carlos 
dc.date.accessioned2021-09-29T12:35:36Z
dc.date.available2021-09-29T12:35:36Z
dc.date.issued2021-08-09
dc.identifier.citationMoreno-Frías, M.A., Rosales, J.C. Numerical semigroups bounded by the translation of a plane monoid. Aequat. Math. 95, 915–929 (2021). [https://doi.org/10.1007/s00010-021-00837-3]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/70534
dc.descriptionM. A. Moreno-Frias: Partially supported by MTM2017-84890-P and by Junta de Andalucia group FQM-298. J. C. Rosales: Partially supported by MTM2017-84890-P and by Junta de Andalucia group FQM-343.es_ES
dc.description.abstractLet N be the set of nonnegative integer numbers. A plane monoid is a submonoid of (N2, +). Let M be a plane monoid and p, q ∈ N. We will say that an integer number n is M(p, q)-bounded if there is (a, b) ∈ M such that a + p ≤ n ≤ b − q. We will denote by A(M(p, q)) = {n ∈ N | n is M(p, q)-bounded}. An A(p, q)-semigroup is a numerical semigroup S such that S = A(M(p, q))∪{0} for some plane monoid M. In this work we will study these kinds of numerical semigroups.es_ES
dc.description.sponsorshipJunta de Andaluciaes_ES
dc.description.sponsorshipMTM2017-84890-Pes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectNumerical semigroupes_ES
dc.subjectA-Semigroupes_ES
dc.subjectA (p, q)-semigroupes_ES
dc.subjectA (p, q)-monoides_ES
dc.subjectAC-semigroupes_ES
dc.subjectPlane monoides_ES
dc.subjectCyclic monoides_ES
dc.subjectFrobenius pseudo-varietyes_ES
dc.subjectFrobenius numberes_ES
dc.subjectGenuses_ES
dc.subjectMultiplicityes_ES
dc.titleNumerical semigroups bounded by the translation of a plane monoides_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s00010-021-00837-3
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 3.0 España