Show simple item record

dc.contributor.authorBarrios Morales, Guillermo Gabriel 
dc.contributor.authorMuñoz Martínez, Miguel Ángel 
dc.date.accessioned2021-09-21T09:15:43Z
dc.date.available2021-09-21T09:15:43Z
dc.date.issued2021
dc.identifier.citationMorales, G.B.; Muñoz, M.A. Optimal Input Representation in Neural Systems at the Edge of Chaos. Biology 2021, 10, 702. https:// doi.org/10.3390/biology10080702es_ES
dc.identifier.urihttp://hdl.handle.net/10481/70324
dc.description.abstractShedding light on how biological systems represent, process and store information in noisy environments is a key and challenging goal. A stimulating, though controversial, hypothesis poses that operating in dynamical regimes near the edge of a phase transition, i.e., at criticality or the “edge of chaos”, can provide information-processing living systems with important operational advantages, creating, e.g., an optimal trade-off between robustness and flexibility. Here, we elaborate on a recent theoretical result, which establishes that the spectrum of covariance matrices of neural networks representing complex inputs in a robust way needs to decay as a power-law of the rank, with an exponent close to unity, a result that has been indeed experimentally verified in neurons of the mouse visual cortex. Aimed at understanding and mimicking these results, we construct an artificial neural network and train it to classify images. We find that the best performance in such a task is obtained when the network operates near the critical point, at which the eigenspectrum of the covariance matrix follows the very same statistics as actual neurons do. Thus, we conclude that operating near criticality can also have—besides the usually alleged virtues—the advantage of allowing for flexible, robust and efficient input representations.es_ES
dc.description.sponsorshipThe Spanish Ministry and Agencia Estatal de investigación (AEI) through grant FIS2017-84256-P (European Regional Development Fund)es_ES
dc.description.sponsorship“Consejería de Conocimiento, Investigación Universidad, Junta de Andalucía” and European Regional Development Fund, Project Ref. A-FQM-175-UGR18 and Project Ref. P20-00173es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectInformation processinges_ES
dc.subjectInput representationes_ES
dc.subjectNeural networkses_ES
dc.subjectCriticality hypothesises_ES
dc.subjectEdge of chaoses_ES
dc.subjectReservoir computinges_ES
dc.titleOptimal Input Representation in Neural Systems at the Edge of Chaoses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.3390/biology10080702


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España