Afficher la notice abrégée

dc.contributor.authorGarcía Hernández, Josefa María 
dc.contributor.authorJara Martínez, Pascual 
dc.contributor.authorMerino González, Luis Miguel 
dc.date.accessioned2021-09-16T12:12:48Z
dc.date.available2021-09-16T12:12:48Z
dc.date.issued2021
dc.identifier.citationGarcía, J. M., Jara, P., & Merino, L. M. (2021). Lattice decomposition of modules. International Electronic Journal of Algebra Volume 30 (2021) 285-303. DOI: [10.24330/ieja.969940]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/70239
dc.description.abstractThe first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module M produce these decompositions: the lattice decompositions. In a first etage this can be done using endomorphisms of M, which produce a decomposition of the ring EndR(M) as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module M has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, Supp(M), of M; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category sigma[M], the smallest Grothendieck subcategory of Mod - R containing M.es_ES
dc.language.isoenges_ES
dc.publisherInternational Electronic Journal of Algebraes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectModulees_ES
dc.subjectRinges_ES
dc.subjectLatticees_ES
dc.subjectLattice decompositiones_ES
dc.subjectGrothendieck categoryes_ES
dc.titleLattice decomposition of moduleses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.24330/ieja.969940
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 3.0 España