Mostrar el registro sencillo del ítem

dc.contributor.authorKim, Jeongho
dc.contributor.authorPoyato Sánchez, Jesús David
dc.contributor.authorSoler Vizcaino, Juan Segundo 
dc.date.accessioned2021-09-15T11:19:39Z
dc.date.available2021-09-15T11:19:39Z
dc.date.issued2021-01-12
dc.identifier.citationPublished version: Kim, J., Poyato, D., & Soler, J. (2021). Hydrodynamic limit of a coupled Cucker–Smale system with strong and weak internal variable relaxation. Mathematical Models and Methods in Applied Sciences, 1-73. [10.1142/S0218202521400042]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/70217
dc.descriptionThis project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639638), the MECD (Spain) research grant FPU14/06304, the MINECO-Feder (Spain) research grant number RTI2018- 098850-B-I00, the Junta de Andalucia (Spain) Projects PY18-RT-2422 & A-FQM-311-UGR18 (D.P, J.S).es_ES
dc.description.abstractIn this paper, we present the hydrodynamic limit of a multiscale system describing the dynamics of two populations of agents with alignment interactions and the effect of an internal variable. It consists of a kinetic equation coupled with an Euler-type equation inspired by the thermomechanical Cucker–Smale (TCS) model. We propose a novel drag force for the fluid-particle interaction reminiscent of Stokes’ law. Whilst the macroscopic species is regarded as a self-organized background fluid that affects the kinetic species, the latter is assumed sparse and does not affect the macroscopic dynamics. We propose two hyperbolic scalings, in terms of a strong and weak relaxation regime of the internal variable towards the background population. Under each regime, we prove the rigorous hydrodynamic limit towards a coupled system composed of two Euler-type equations. Inertial effects of momentum and internal variable in the kinetic species disappear for strong relaxation, whereas a nontrivial dynamics for the internal variable appears for weak relaxation. Our analysis covers both the case of Lipschitz and weakly singular influence functions.es_ES
dc.description.sponsorshipEuropean Research Council (ERC) 639638es_ES
dc.description.sponsorshipMECD (Spain) FPU14/06304es_ES
dc.description.sponsorshipMINECO-Feder (Spain) RTI2018-098850-B-I00es_ES
dc.description.sponsorshipJunta de Andalucia European Commission PY18-RT-2422 A-FQM-311-UGR18es_ES
dc.description.sponsorshipBasic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT NRF-2020R1A4A3079066es_ES
dc.language.isoenges_ES
dc.publisherWorld Scientifices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectFlockinges_ES
dc.subjectHydrodynamic limites_ES
dc.subjectKinetic modeles_ES
dc.subjectMultiscale modeles_ES
dc.subjectThermomechanical Cucker-Smale modeles_ES
dc.subjectInternal variablees_ES
dc.subjectSingular weightses_ES
dc.titleHydrodynamic limit of a coupled Cucker-Smale system with strong and weak internal variable relaxationes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/639638es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1142/S0218202521400042
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España