Afficher la notice abrégée

dc.contributor.authorGiovannardi, Gianmarco
dc.contributor.authorRitoré Cortés, Manuel María 
dc.date.accessioned2021-09-07T09:42:07Z
dc.date.available2021-09-07T09:42:07Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/10481/70134
dc.description.abstractGiven a strictly convex set $K\subset\rr^2$ of class $C^2$ we consider its associated sub-Finsler $K$-perimeter $|\ptl E|_K$ in $\hh^1$ and the prescribed mean curvature functional $|\ptl E|_K-\int_E f$ associated to a function $f$. Given a critical set for this functional, we prove that where the boundary of $E$ is Euclidean lipschitz and intrinsic regular, the characteristic curves are of class $C^2$. Moreover, this regularity is optimal. The result holds in particular when the boundary of $E$ is of class $C^1$es_ES
dc.language.isoenges_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectSub-Finsler areaes_ES
dc.subjectMean curvaturees_ES
dc.subjectRegularityes_ES
dc.titleRegularity of Lipschitz boundaries with prescribed sub-Finsler mean curvature in the Heisenberg group H^1es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España