Mostrar el registro sencillo del ítem
Regularity of Lipschitz boundaries with prescribed sub-Finsler mean curvature in the Heisenberg group H^1
dc.contributor.author | Giovannardi, Gianmarco | |
dc.contributor.author | Ritoré Cortés, Manuel María | |
dc.date.accessioned | 2021-09-07T09:42:07Z | |
dc.date.available | 2021-09-07T09:42:07Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://hdl.handle.net/10481/70134 | |
dc.description.abstract | Given a strictly convex set $K\subset\rr^2$ of class $C^2$ we consider its associated sub-Finsler $K$-perimeter $|\ptl E|_K$ in $\hh^1$ and the prescribed mean curvature functional $|\ptl E|_K-\int_E f$ associated to a function $f$. Given a critical set for this functional, we prove that where the boundary of $E$ is Euclidean lipschitz and intrinsic regular, the characteristic curves are of class $C^2$. Moreover, this regularity is optimal. The result holds in particular when the boundary of $E$ is of class $C^1$ | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Sub-Finsler area | es_ES |
dc.subject | Mean curvature | es_ES |
dc.subject | Regularity | es_ES |
dc.title | Regularity of Lipschitz boundaries with prescribed sub-Finsler mean curvature in the Heisenberg group H^1 | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |