Show simple item record

dc.contributor.authorGuowei, Dai
dc.contributor.authorRomero Sarabia, Alfonso 
dc.contributor.authorTorres Villarroya, Pedro José 
dc.date.accessioned2021-09-07T07:37:42Z
dc.date.available2021-09-07T07:37:42Z
dc.date.issued2018
dc.identifier.citationGuowei, D., Romero Sarabia, A., Torres Villarroya, P.J.. Differential Equations vol. 264, no. 12, pp. 7242–7269, 2018.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/70127
dc.description.abstractWe study the existence of spacelike graphs for the prescribed mean curvature equation in the Friedmann-Lemaˆıtre-Robertson-Walker (FLRW) spacetime. By using a conformal change of variable, this problem is translated into an equivalent problem in the Lorentz-Minkowski spacetime. Then, by using Rabinowitz’s global bifurcation method, we obtain the existence and multiplicity of positive solutions for this equation with 0-Dirichlet boundary condition on a ball. Moreover, the global structure of the positive solution set is studiedes_ES
dc.language.isoenges_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.titleGlobal bifurcation of solutions of the mean curvature spacelike equation in certain Friedmann-Lemaître-Robertson-Walker spacetimeses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionAOes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License