• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: EC3. Evaluación de la Ciencia y la Comunicación Científica (HUM777)
  • EC3 - Comunicaciones Congresos, Conferencias, ...
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: EC3. Evaluación de la Ciencia y la Comunicación Científica (HUM777)
  • EC3 - Comunicaciones Congresos, Conferencias, ...
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

The growth of COVID-19 scientific literature: A forecast analysis of different daily time series in specific settings

[PDF] Proceedings ISSI 2021 (2)-1153-1162.pdf (905.6Ko)
[PDF] Proceedings ISSI 2021 (2)-1153-1162.pdf (905.6Ko)
Identificadores
URI: http://hdl.handle.net/10481/69677
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Torres Salinas, Daniel; Robinson García, Nicolás; van Schalkwyk, François; F. Nane, Gabriela; Castillo-Valdivieso, Pedro
Editorial
ISSI
Materia
bibliometrics
 
Covid-19
 
Date
2021-07-13
Résumé
We present a forecasting analysis on the growth of scientific literature related to COVID-19 expected for 2021. Considering the paramount scientific and financial efforts made by the research community to find solutions to end the COVID-19 pandemic, an unprecedented volume of scientific outputs is being produced. This questions the capacity of scientists, politicians and citizens to maintain infrastructure, digest content and take scientifically informed decisions. A crucial aspect is to make predictions to prepare for such a large corpus of scientific literature. Here we base our predictions on the ARIMA model and use two different data sources: the Dimensions and World Health Organization COVID-19 databases. These two sources have the particularity of including in the metadata information the date in which papers were indexed. We present global predictions, plus predictions in three specific settings: type of access (Open Access), NLM source (PubMed and PMC), and domain-specific repository (SSRN and MedRxiv). We conclude by discussing our findings.
Colecciones
  • EC3 - Comunicaciones Congresos, Conferencias, ...

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire