• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: EC3. Evaluación de la Ciencia y la Comunicación Científica (HUM777)
  • EC3 - Comunicaciones Congresos, Conferencias, ...
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: EC3. Evaluación de la Ciencia y la Comunicación Científica (HUM777)
  • EC3 - Comunicaciones Congresos, Conferencias, ...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The growth of COVID-19 scientific literature: A forecast analysis of different daily time series in specific settings

[PDF] Proceedings ISSI 2021 (2)-1153-1162.pdf (905.6Kb)
[PDF] Proceedings ISSI 2021 (2)-1153-1162.pdf (905.6Kb)
Identificadores
URI: http://hdl.handle.net/10481/69677
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Torres Salinas, Daniel; Robinson García, Nicolás; van Schalkwyk, François; F. Nane, Gabriela; Castillo-Valdivieso, Pedro
Editorial
ISSI
Materia
bibliometrics
 
Covid-19
 
Date
2021-07-13
Abstract
We present a forecasting analysis on the growth of scientific literature related to COVID-19 expected for 2021. Considering the paramount scientific and financial efforts made by the research community to find solutions to end the COVID-19 pandemic, an unprecedented volume of scientific outputs is being produced. This questions the capacity of scientists, politicians and citizens to maintain infrastructure, digest content and take scientifically informed decisions. A crucial aspect is to make predictions to prepare for such a large corpus of scientific literature. Here we base our predictions on the ARIMA model and use two different data sources: the Dimensions and World Health Organization COVID-19 databases. These two sources have the particularity of including in the metadata information the date in which papers were indexed. We present global predictions, plus predictions in three specific settings: type of access (Open Access), NLM source (PubMed and PMC), and domain-specific repository (SSRN and MedRxiv). We conclude by discussing our findings.
Collections
  • EC3 - Comunicaciones Congresos, Conferencias, ...

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback