• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: EC3. Evaluación de la Ciencia y la Comunicación Científica (HUM777)
  • EC3 - Comunicaciones Congresos, Conferencias, ...
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: EC3. Evaluación de la Ciencia y la Comunicación Científica (HUM777)
  • EC3 - Comunicaciones Congresos, Conferencias, ...
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

The growth of COVID-19 scientific literature: A forecast analysis of different daily time series in specific settings

[PDF] Proceedings ISSI 2021 (2)-1153-1162.pdf (905.6Kb)
[PDF] Proceedings ISSI 2021 (2)-1153-1162.pdf (905.6Kb)
Identificadores
URI: http://hdl.handle.net/10481/69677
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Torres Salinas, Daniel; Robinson García, Nicolás; van Schalkwyk, François; F. Nane, Gabriela; Castillo-Valdivieso, Pedro
Editorial
ISSI
Materia
bibliometrics
 
Covid-19
 
Fecha
2021-07-13
Resumen
We present a forecasting analysis on the growth of scientific literature related to COVID-19 expected for 2021. Considering the paramount scientific and financial efforts made by the research community to find solutions to end the COVID-19 pandemic, an unprecedented volume of scientific outputs is being produced. This questions the capacity of scientists, politicians and citizens to maintain infrastructure, digest content and take scientifically informed decisions. A crucial aspect is to make predictions to prepare for such a large corpus of scientific literature. Here we base our predictions on the ARIMA model and use two different data sources: the Dimensions and World Health Organization COVID-19 databases. These two sources have the particularity of including in the metadata information the date in which papers were indexed. We present global predictions, plus predictions in three specific settings: type of access (Open Access), NLM source (PubMed and PMC), and domain-specific repository (SSRN and MedRxiv). We conclude by discussing our findings.
Colecciones
  • EC3 - Comunicaciones Congresos, Conferencias, ...

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias