Show simple item record

dc.contributor.authorRitoré Cortés, Manuel María 
dc.contributor.authorPozuelo Domínguez, Julián 
dc.date.accessioned2021-06-21T11:29:53Z
dc.date.available2021-06-21T11:29:53Z
dc.date.issued2021-05-18
dc.identifier.citationPozuelo, Julián and Ritoré, Manuel. "Pansu–Wulff shapes in ℍ1" Advances in Calculus of Variations, vol. , no. , 2021, pp. 000010151520200093. [https://doi.org/10.1515/acv-2020-0093]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/69324
dc.descriptionThe authors have been supported byMEC-Feder grantMTM2017-84851-C2-1-P, Junta de Andalucía grant A-FQM-441-UGR18, MSCA GHAIA, and Research Unit MNat UCE-PP2017-3. This research was also funded by the Consejería de economía, conocimiento, empresas y universidad and European Regional Development Fund (ERDF), ref. SOMM17/6109/UGR.es_ES
dc.description.abstractWe consider an asymmetric left-invariant norm ∥⋅∥K in the first Heisenberg group H1 induced by a convex body K⊂R2 containing the origin in its interior. Associated to ∥⋅∥K there is a perimeter functional, that coincides with the classical sub-Riemannian perimeter in case K is the closed unit disk centered at the origin of R2. Under the assumption that K has C2 boundary with strictly positive geodesic curvature we compute the first variation formula of perimeter for sets with C2 boundary. The localization of the variational formula in the non-singular part of the boundary, composed of the points where the tangent plane is not horizontal, allows us to define a mean curvature function HK out of the singular set. In the case of non-vanishing mean curvature, the condition that HK be constant implies that the non-singular portion of the boundary is foliated by horizontal liftings of translations of ∂K dilated by a factor of 1HK. Based on this we can define a sphere SK with constant mean curvature 1 by considering the union of all horizontal liftings of ∂K starting from (0,0,0) until they meet again in a point of the vertical axis. We give some geometric properties of this sphere and, moreover, we prove that, up to non-homogeneous dilations and left-translations, they are the only solutions of the sub-Finsler isoperimetric problem in a restricted class of sets.es_ES
dc.description.sponsorshipMEC-Feder grantMTM2017-84851-C2-1-Pes_ES
dc.description.sponsorshipJunta de Andalucía grant A-FQM-441-UGR18es_ES
dc.description.sponsorshipMSCA GHAIAes_ES
dc.description.sponsorshipResearch Unit MNat UCE-PP2017-3es_ES
dc.description.sponsorshipConsejería de economía, conocimiento, empresas y universidad and European Regional Development Fund (ERDF), ref. SOMM17/6109/UGRes_ES
dc.language.isoenges_ES
dc.publisherDe Gruyteres_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectSub-Finsler perimeteres_ES
dc.subjectPansu–Wulff shapeses_ES
dc.subjectAnisotropic variational problemses_ES
dc.subjectHeisenberg groupes_ES
dc.titlePansu–Wulff shapes in ℍ1es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1515/acv-2020-0093
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España