Afficher la notice abrégée

dc.contributor.authorRitoré Cortés, Manuel María 
dc.contributor.authorPozuelo Domínguez, Julián 
dc.date.accessioned2021-06-21T11:29:53Z
dc.date.available2021-06-21T11:29:53Z
dc.date.issued2021-05-18
dc.identifier.citationPozuelo, Julián and Ritoré, Manuel. "Pansu–Wulff shapes in ℍ1" Advances in Calculus of Variations, vol. , no. , 2021, pp. 000010151520200093. [https://doi.org/10.1515/acv-2020-0093]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/69324
dc.descriptionThe authors have been supported byMEC-Feder grantMTM2017-84851-C2-1-P, Junta de Andalucía grant A-FQM-441-UGR18, MSCA GHAIA, and Research Unit MNat UCE-PP2017-3. This research was also funded by the Consejería de economía, conocimiento, empresas y universidad and European Regional Development Fund (ERDF), ref. SOMM17/6109/UGR.es_ES
dc.description.abstractWe consider an asymmetric left-invariant norm ∥⋅∥K in the first Heisenberg group H1 induced by a convex body K⊂R2 containing the origin in its interior. Associated to ∥⋅∥K there is a perimeter functional, that coincides with the classical sub-Riemannian perimeter in case K is the closed unit disk centered at the origin of R2. Under the assumption that K has C2 boundary with strictly positive geodesic curvature we compute the first variation formula of perimeter for sets with C2 boundary. The localization of the variational formula in the non-singular part of the boundary, composed of the points where the tangent plane is not horizontal, allows us to define a mean curvature function HK out of the singular set. In the case of non-vanishing mean curvature, the condition that HK be constant implies that the non-singular portion of the boundary is foliated by horizontal liftings of translations of ∂K dilated by a factor of 1HK. Based on this we can define a sphere SK with constant mean curvature 1 by considering the union of all horizontal liftings of ∂K starting from (0,0,0) until they meet again in a point of the vertical axis. We give some geometric properties of this sphere and, moreover, we prove that, up to non-homogeneous dilations and left-translations, they are the only solutions of the sub-Finsler isoperimetric problem in a restricted class of sets.es_ES
dc.description.sponsorshipMEC-Feder grantMTM2017-84851-C2-1-Pes_ES
dc.description.sponsorshipJunta de Andalucía grant A-FQM-441-UGR18es_ES
dc.description.sponsorshipMSCA GHAIAes_ES
dc.description.sponsorshipResearch Unit MNat UCE-PP2017-3es_ES
dc.description.sponsorshipConsejería de economía, conocimiento, empresas y universidad and European Regional Development Fund (ERDF), ref. SOMM17/6109/UGRes_ES
dc.language.isoenges_ES
dc.publisherDe Gruyteres_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectSub-Finsler perimeteres_ES
dc.subjectPansu–Wulff shapeses_ES
dc.subjectAnisotropic variational problemses_ES
dc.subjectHeisenberg groupes_ES
dc.titlePansu–Wulff shapes in ℍ1es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1515/acv-2020-0093
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 3.0 España