Show simple item record

dc.contributor.authorGarcía, Domingo
dc.contributor.authorMaestre, Manuel
dc.contributor.authorMartín Suárez, Miguel 
dc.contributor.authorRoldán, Óscar
dc.identifier.citationPublisher version: García, D., Maestre, M., Martín, M. et al. On the Compact Operators Case of the Bishop–Phelps–Bollobás Property for Numerical Radius. Results Math 76, 122 (2021). []es_ES
dc.descriptionThe authors would like to thank Bill Johnson for kindly answering several inquiries.es_ES
dc.description.abstractWe study the Bishop–Phelps–Bollobás property for numerical radius restricted to the case of compact operators (BPBp-nu for compact operators in short). We show that C0(L) spaces have the BPBp-nu for compact operators for every Hausdorff topological locally compact space L. To this end, on the one hand, we provide some techniques allowing to pass the BPBp-nu for compact operators from subspaces to the whole space and, on the other hand, we prove some strong approximation property of C0(L) spaces and their duals. Besides, we also show that real Hilbert spaces and isometric preduals of ℓ1 have the BPBp-nu for compact operators.es_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.titleOn the compact operators case of the Bishop-Phelps-Bollobás property for numerical radiuses_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España