Mostrar el registro sencillo del ítem

dc.contributor.authorAhualli Yapur, Silvia Alejandra 
dc.contributor.authorJiménez Olivares, María Luisa 
dc.contributor.authorAmador, Z.
dc.contributor.authorIglesias Salto, Guillermo Ramón 
dc.contributor.authorDelgado Mora, Ángel Vicente 
dc.date.accessioned2021-06-16T08:30:36Z
dc.date.available2021-06-16T08:30:36Z
dc.date.issued2021-05-17
dc.identifier.citationSustainable Energy Fuels, 2021, Advance Article. DOI: [10.1039/d1se00224d]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/69213
dc.descriptionThis study has been partially.nanced by the Consejeria de Conocimiento, Investigacion y Universidad, Junta de Andalucia and European Regional Development Fund (ERDF), ref. UGR-BFQM-141-UGR18, and Ministerio de Ciencia, Innovacion y Universidades, Spain (PGC2018-098770-B-I00).es_ES
dc.description.abstractIt is now indisputable that clean energy sources must fulfill the increase in the energy demand of all societies. For such a challenge, every small step towards utilizing any renewable source counts. One prominent example is that of blue energy or energy production based on salinity gradients, existing in all kinds of environments, both natural and industrial. Specifically, the present work is based on electric energy that can be extracted when salty and fresh solutions are exchanged in the presence of a pair of electrodes. It has been previously reported that the use of interfaces coated with charged polymers (yielding a deformable or soft interface) offers considerable advantage over bare electrodes, and the combination of Donnan and double layer potentials can play in favour of larger energy and power generation. In this work we show that the temperature dependence of both contributions can produce an even higher performance, and the consideration of this feature is the key point of this work. If the low ionic concentration solution (fresh water) is at higher temperature than that of the high concentration one (salty water), both energy and power increase as compared to those attained at equal temperatures. This behaviour is investigated with activated carbon electrodes coated with cationic and anionic polyelectrolytes to form an electrochemical cell in contact successively with room temperature salt water and warm fresh water. When the difference between the two amounts to about 40 degrees C, the energy and power can increase by almost 80%, a very significant improvement that paves the way to further progress in salinity gradient power production.es_ES
dc.description.sponsorshipJunta de Andaluciaes_ES
dc.description.sponsorshipEuropean Commission UGR-BFQM-141-UGR18es_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovacion y Universidades, Spain PGC2018-098770-B-I00es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rightsAtribución-NoComercial 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.titleEnergy production by salinity exchange in polyelectrolyte-coated electrodes. Temperature effectses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1039/d1se00224d
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 3.0 España