Show simple item record

dc.contributor.authorLópez Camino, Rafael
dc.identifier.citationLópez, R.; Milin Šipuš, Ž.; Primorac Gajˇci´c, L.; Protrka, I. Involutes of Pseudo-Null Curves in Lorentz–Minkowski 3-Space. Mathematics 2021, 9, 1256. https://
dc.description.abstractIn this paper, we analyze involutes of pseudo-null curves in Lorentz–Minkowski 3-space. Pseudo-null curves are spacelike curves with null principal normals, and their involutes can be defined analogously as for the Euclidean curves, but they exhibit properties that cannot occur in Euclidean space. The first result of the paper is that the involutes of pseudo-null curves are null curves, more precisely, null straight lines. Furthermore, a method of reconstruction of a pseudo-null curve from a given null straight line as its involute is provided. Such a reconstruction process in Euclidean plane generates an evolute of a curve, however it cannot be applied to a straight line. In the case presented, the process is additionally affected by a choice of different null frames that every null curve allows (in this case, a null straight line). Nevertheless, we proved that for different null frames, the obtained pseudo-null curves are congruent. Examples that verify presented results are also given.es_ES
dc.description.sponsorshipMTM2017-89677-P, MINECO/ AEI/FEDER, UE.es_ES
dc.rightsAtribución 3.0 España*
dc.subjectLorentz–Minkowski 3-spacees_ES
dc.subjectPseudo-null curvees_ES
dc.subjectSocial Involutiones_ES
dc.subjectNull curvees_ES
dc.titleInvolutes of Pseudo-Null Curves in Lorentz–Minkowski 3-Spacees_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España