Show simple item record

dc.contributor.authorVillarejo Ramos, Ángel F.
dc.contributor.authorCabrera Sánchez, Juan Pedro
dc.contributor.authorLara Rubio, Juan 
dc.contributor.authorLiébana Cabanillas, Francisco José
dc.identifier.citationVillarejo-Ramos ÁF, Cabrera-Sánchez J-P, Lara-Rubio J and Liébana-Cabanillas F (2021) Predicting Big Data Adoption in Companies With an Explanatory and Predictive Model. Front. Psychol. 12:651398. doi: [10.3389/fpsyg.2021.651398]es_ES
dc.description.abstractThe purpose of this paper is to identify the factors that affect the intention to use Big Data Applications in companies. Research into Big Data usage intention and adoption is scarce and much less from the perspective of the use of these techniques in companies. That is why this research focuses on analyzing the adoption of Big Data Applications by companies. Further to a review of the literature, it is proposed to use a UTAUT model as a starting model with the update and incorporation of other variables such as resistance to use and perceived risk, and then to perform a neural network to predict this adoption. With respect to this non-parametric technique, we found that the multilayer perceptron model (MLP) for the use of Big Data Applications in companies obtains higher AUC values, and a better confusion matrix. This paper is a pioneering study using this hybrid methodology on the intention to use Big Data Applications. The result of this research has important implications for the theory and practice of adopting Big Data Applications.es_ES
dc.publisherFrontiers Research Foundationes_ES
dc.rightsAtribución 3.0 España*
dc.subjectBig Dataes_ES
dc.subjectAdoption es_ES
dc.subjectIntention to usees_ES
dc.subjectNeural networkses_ES
dc.subjectPredictive modeles_ES
dc.titlePredicting Big Data Adoption in Companies With an Explanatory and Predictive Modeles_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España