Mostrar el registro sencillo del ítem

dc.contributor.authorMoran Sánchez, Julia
dc.contributor.authorSantisteban Espejo, Antonio Leopoldo
dc.contributor.authorMartín Piedra, Miguel Ángel 
dc.contributor.authorPérez Requena, José
dc.contributor.authorGarcía Rojo, Marcial
dc.date.accessioned2021-05-26T06:45:16Z
dc.date.available2021-05-26T06:45:16Z
dc.date.issued2021
dc.identifier.citationMoran-Sanchez, J.; Santisteban-Espejo, A.; Martin-Piedra, M.A.; Perez-Requena, J.; GarciaRojo, M. Translational Applications of Artificial Intelligence and Machine Learning for Diagnostic Pathology in Lymphoid Neoplasms: A Comprehensive and Evolutive Analysis. Biomolecules 2021, 11, 793. https://doi.org/10.3390/ biom11060793es_ES
dc.identifier.urihttp://hdl.handle.net/10481/68722
dc.description.abstractGenomic analysis and digitalization of medical records have led to a big data scenario within hematopathology. Artificial intelligence and machine learning tools are increasingly used to integrate clinical, histopathological, and genomic data in lymphoid neoplasms. In this study, we identified global trends, cognitive, and social framework of this field from 1990 to 2020. Metadata were obtained from the Clarivate Analytics Web of Science database in January 2021. A total of 525 documents were assessed by document type, research areas, source titles, organizations, and countries. SciMAT and VOSviewer package were used to perform scientific mapping analysis. Geographical distribution showed the USA and People’s Republic of China as the most productive countries, reporting up to 190 (36.19%) of all documents. A third-degree polynomic equation predicts that future global production in this area will be three-fold the current number, near 2031. Thematically, current research is focused on the integration of digital image analysis and genomic sequencing in Non-Hodgkin lymphomas, prediction of chemotherapy response and validation of new prognostic models. These findings can serve pathology departments to depict future clinical and research avenues, but also, public institutions and administrations to promote synergies and optimize funding allocation.es_ES
dc.description.sponsorshipAndalusia Health System - RH-0145-2020es_ES
dc.description.sponsorshipEU FEDER ITI Grant for Cadiz Province PI-0032-2017es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectArtificial intelligence es_ES
dc.subjectHematopathologyes_ES
dc.subjectLymphoid neoplasmses_ES
dc.subjectDigital image analysises_ES
dc.subjectMachine Learninges_ES
dc.titleTranslational Applications of Artificial Intelligence and Machine Learning for Diagnostic Pathology in Lymphoid Neoplasms: A Comprehensive and Evolutive Analysises_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/biom11060793


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España