Optimal dimension and optimal auxiliary vector to construct calibration estimators of the distribution function
Identificadores
URI: http://hdl.handle.net/10481/68547Metadatos
Mostrar el registro completo del ítemMateria
Auxiliary information calibration technique distribution function estimates survey sampling
Fecha
2017-07Referencia bibliográfica
S. Martínez, M. Rueda, H. Martínez, A. Arcos, Optimal dimension and optimal auxiliary vector to construct calibration estimators of the distribution function, Journal of Computational and Applied Mathematics, Volume 318, 2017, Pages 444-459, ISSN 0377-0427, https://doi.org/10.1016/j.cam.2016.02.002.
Patrocinador
Ministerio de Educación y Ciencia; Consejería de Economía, Innovación, Ciencia y EmpleoResumen
The calibration technique (Deville and Särndal, 1992) to estimate the finite distribution function has been studied in several papers. Calibration seeks for new weights close enough to sampling weights according to some distance function and that, at the same time, match benchmark constraints on available auxiliary information. The non smooth character of the finite population distribution function causes certain complexities that are resolved by different authors in different ways. One of these is to have consistency at a number of arbitrarily chosen points. This paper deals with the problem of the optimal selection of the number of points and with the optimal selections of these points, when auxiliary information is used by means of calibration.