Mostrar el registro sencillo del ítem

dc.contributor.authorQaddoura, Raneem
dc.contributor.authorAl-Zoubi, Ala´ M.
dc.contributor.authorAlmomani, Iman
dc.contributor.authorFaris, Hossam
dc.date.accessioned2021-05-14T07:08:44Z
dc.date.available2021-05-14T07:08:44Z
dc.date.issued2021-03-28
dc.identifier.citationQaddoura, R.; Al-Zoubi, A.M.; Almomani, I.; Faris, H. A Multi-Stage Classification Approach for IoT Intrusion Detection Based on Clustering with Oversampling. Appl. Sci. 2021, 11, 3022. [https://doi.org/10.3390/app11073022]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/68506
dc.descriptionThis research received no external funding. The APC is funded by Prince Sultan Universityes_ES
dc.descriptionThe authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges (APC) of this publication.es_ES
dc.description.abstractIntrusion detection of IoT-based data is a hot topic and has received a lot of interests from researchers and practitioners since the security of IoT networks is crucial. Both supervised and unsupervised learning methods are used for intrusion detection of IoT networks. This paper proposes an approach of three stages considering a clustering with reduction stage, an oversampling stage, and a classification by a Single Hidden Layer Feed-Forward Neural Network (SLFN) stage. The novelty of the paper resides in the technique of data reduction and data oversampling for generating useful and balanced training data and the hybrid consideration of the unsupervised and supervised methods for detecting the intrusion activities. The experiments were evaluated in terms of accuracy, precision, recall, and G-mean and divided into four steps: measuring the effect of the data reduction with clustering, the evaluation of the framework with basic classifiers, the effect of the oversampling technique, and a comparison with basic classifiers. The results show that SLFN classification technique and the choice of Support Vector Machine and Synthetic Minority Oversampling Technique (SVM-SMOTE) with a ratio of 0.9 and the k value of 3 for k-means++ clustering technique give better results than other values and other classification techniques.es_ES
dc.description.sponsorshipPrince Sultan Universityes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectIntrusion detectiones_ES
dc.subjectIoTes_ES
dc.subjectInternet of thingses_ES
dc.subjectImbalancedes_ES
dc.subjectOversamplinges_ES
dc.subjectIoTID20es_ES
dc.subjectClusteringes_ES
dc.titleA Multi-Stage Classification Approach for IoT Intrusion Detection Based on Clustering with Oversamplinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/app11073022
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España