Mostrar el registro sencillo del ítem

dc.contributor.authorRueda García, María Del Mar 
dc.contributor.authorCobo Rodríguez, Beatriz 
dc.contributor.authorPerri, Pier Francesco
dc.date.accessioned2021-05-14T06:11:22Z
dc.date.available2021-05-14T06:11:22Z
dc.date.issued2021-08
dc.identifier.citationM. Rueda, B. Cobo, P.F. Perri, New estimation techniques for ordinal sensitive variables, Mathematics and Computers in Simulation, Volume 186, 2021, Pages 62-70, ISSN 0378-4754, https://doi.org/10.1016/j.matcom.2020.06.016.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/68499
dc.description.abstractMethods to analyze multicategorical variables are extensively used in sociological, medical and educational research. Nonetheless, they have a very sparse presence in finite population sampling when sensitive topics are investigated and data are obtained by means of the randomized response technique (RRT), a survey method based on the principle that sensitive questions must not be asked directly to the respondents. The RRT is used with the aim of reducing social desirability bias, which is defined as the respondent tendency to release personal information according to what is socially acceptable. This nonstandard data-collection approach was originally developed to deal with dichotomous responses to sensitive questions. Later, the idea has been extended to multicategory responses. In this paper we consider ordinal variables with more than two response categories. In particular, we first discuss the theoretical framework for estimating the frequency of ordinal categories when data are subjected to misclassification due to the use of a particular RRT. Then, we show how it is possible to improve the efficiency of the inferential process by employing auxiliary information at the estimation stage through the calibration approach. Finally, we assess the performance of the proposed estimators in a Monte Carlo simulation study.es_ES
dc.description.sponsorshipMinisterio de Econom´ıa y Competitividad of Spaines_ES
dc.language.isoenges_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectOrdinal logistic regressiones_ES
dc.subjectRandomized responsees_ES
dc.subjectCalibration es_ES
dc.subjectMonte Carlo simulationes_ES
dc.titleNew estimation techniques for ordinal sensitive variableses_ES
dc.typejournal articlees_ES
dc.relation.projectIDMTM2015-63609-Res_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.matcom.2020.06.016
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España