Mostrar el registro sencillo del ítem

dc.contributor.authorHernández, Inés
dc.contributor.authorGutiérrez Salcedo, Salvador
dc.date.accessioned2021-05-10T08:42:47Z
dc.date.available2021-05-10T08:42:47Z
dc.date.issued2021
dc.identifier.citationHernández, I.; Gutiérrez, S.; Ceballos, S.; Iñíguez, R.; Barrio, I.; Tardaguila, J. Artificial Intelligence and Novel Sensing Technologies for Assessing Downy Mildew in Grapevine. Horticulturae 2021, 7, 103. https://doi.org/10.3390/horticulturae7050103es_ES
dc.identifier.urihttp://hdl.handle.net/10481/68427
dc.description.abstractPlant diseases and pests cause a large loss of world agricultural production. Downy mildew is a major disease in grapevine. Conventional techniques for plant diseases evaluations are time-consuming and require expert personnel. This work investigates novel sensing technologies and artificial intelligence applications for assessing downy mildew in grapevine under laboratory conditions. In our methodology, machine vision is applied to assess downy mildew sporulation, while hyperspectral imaging is used to explore its potential capability towards early detection of this disease. Image analysis applied to RGB leaf disc images is used to estimate downy mildew (Plamopara viticola) severity in grapevine (Vitis vinifera L. cv Tempranillo). A determination coefficient (R2) of 0.76 ** and a root mean square error (RMSE) of 20.53% are observed in the correlation between downy mildew severity by computer vision and expert’s visual assessment. Furthermore, an accuracy of 81% is achieved to detect downy mildew early using hyperspectral images. These results indicate that non-invasive sensing technologies and computer vision can be applied for assessing and quantify sporulation of downy mildew in grapevine leaves. The severity of this key disease is evaluated in grapevine under laboratory conditions. In conclusion, computer vision, hyperspectral imaging and machine learning could be applied for important disease detection in grapevine.es_ES
dc.description.sponsorshipProject NoPest (Novel Pesticides for a Sustainable Agriculture)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectMachine visiones_ES
dc.subjectHyperspectral imaginges_ES
dc.subjectNon-invasive phenotyping toolses_ES
dc.subjectMachine learninges_ES
dc.subjectCNNes_ES
dc.subjectPrecision viticulturees_ES
dc.titleArtificial Intelligence and Novel Sensing Technologies for Assessing Downy Mildew in Grapevinees_ES
dc.typejournal articlees_ES
dc.relation.projectIDeu-repo/grantAgreement/EC/H2020/828940es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/horticulturae7050103


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España