dc.identifier.citation | Gómez‐Vivo, D.; Gervilla, F.; Piña, R.; Hernández‐Díaz, R.; Azor, A. Gold in the Farallones Block of the Shale‐Hosted, Clastic‐Dominated Castellanos Zinc‐Lead Deposit (Northwest Cuba). Minerals 2021, 11, 414. https://doi.org/10.3390/ min11040414 | es_ES |
dc.description.abstract | The Zn‐Pb ores of the Castellanos shale‐hosted, clastic‐dominated deposit in northwest
Cuba average nearly 1 g/t Au, with local maximum concentrations up to 34 g/t Au. This deposit is
stratiform with respect to the bedding in the host black shales and shows a bottom to top zoning of
ore assemblages made up of a stockwork underlying the main orebody, a basal pyrite‐rich zone and
a disseminated to massive Zn‐Pb ore zone capped by a discontinuous, thin barite‐rich zone. Petro‐
graphic data and textural relations allow distinguishing five textural types of pyrite (framboidal Py
I, colloform Py IIa, euhedral Py IIb, massive Py IIc and banded colloform Py III) successively formed
during ore deposition. The main Zn‐Pb ore formed after the crystallization of disseminated, sedi‐
mentary framboidal pyrite (Py I) in black shales by the superimposition of several crystallization
events. The crystallization sequence of the main ore‐forming stage evolved from the precipitation
of colloform sphalerite and pyrite (Py IIa) with skeletal galena and interstitial dolomite‐ankerite to
similar ore assemblages but showing subhedral to euhedral crystal habits (Py IIb) and interstitial
calcite‐rich carbonates. This stage ended with the development of massive pyrite (Py IIc), mainly
occurring at the base of the stratiform orebody. A late fracturing stage gave way to the development
of a new generation of colloform banded pyrite (Py III) just preceding the crystallization of early
barite. Au is mainly concentrated in pyrite showing variable contents in the different textural types
of pyrite and a bottom to top enrichment trend. Minimum contents occur in massive pyrite (Py IIc)
from the basal pyrite‐rich zone (0.18 ppm Au average), increasing in pyrite IIa (from 0.29 to 2.86
ppm Au average) and in euhedral pyrite (Py IIb) (from 0.82 to 9.02 ppm Au average), reaching
maxima in colloform banded pyrite (Py III) formed just before the crystallization of early barite at
the top of the orebody. Au enrichment in pyrite correlates with that of Sb (0.08–4420 ppm), As (0.7–
35,000 ppm), Ag (0.03–1560 ppm) and to a lesser extent Cu (3–25,000 ppm), Ni (0.02–1600 ppm) and
Mn (0.6–5030 ppm). Au deposition should have taken place by oxidation and, probably cooling, of
reduced (H2S‐dominated) fluids buffered by organic matter‐rich black shales of the host sedimen‐
tary sequence. The input of such reduced fluids in the ore‐forming environment most probably oc‐
curred alternating with that of the main oxidized fluids which leached Zn and Pb from the large
volume of sandstones and siltstones making up the enclosing sequence, thus being responsible for
the precipitation of the majority Zn‐Pb ore. Supply of Au‐carrying reduced fluids might progres‐
sively increase over the course of ore formation, reaching a maximum at the beginning of the late
fracturing stage. This evolution of Au supply is consistent with the early crystallization of barite
since Ba can also only be transported at low temperature by highly reduced fluids. These results
highlight the potential of medium‐sized, shale‐hosted, clastic‐dominated deposits to contain eco‐
nomic (by product) Au amounts and show that ore‐forming fluids can change from oxidized (SO42+
dominated) to reduced (H2S‐dominated), and vice versa, throughout the evolutionary history of a
single deposit. | es_ES |