Mostrar el registro sencillo del ítem

dc.contributor.authorCampos Ibáñez, Luis Miguel 
dc.contributor.authorFernández Luna, Juan Manuel 
dc.contributor.authorHuete Guadix, Juan Francisco 
dc.contributor.authorRedondo Expósito, Luis 
dc.date.accessioned2021-03-26T12:21:20Z
dc.date.available2021-03-26T12:21:20Z
dc.date.issued2020
dc.identifier.citationKnowledge-Based Systems 190 (2020) 105337es_ES
dc.identifier.urihttp://hdl.handle.net/10481/67743
dc.description.abstractIn the information age we are living in today, not only are we interested in accessing multimedia objects such as documents, videos, etc. but also in searching for professional experts, people or celebrities, possibly for professional needs or just for fun. Information access systems need to be able to extract and exploit various sources of information (usually in text format) about such individuals, and to represent them in a suitable way usually in the form of a profile. In this article, we tackle the problems of profile-based expert recommendation and document filtering from a machine learning perspective by clustering expert textual sources to build profiles and capture the different hidden topics in which the experts are interested. The experts will then be represented by means of multifaceted profiles. Our experiments show that this is a valid technique to improve the performance of expert finding and document filtering.es_ES
dc.description.sponsorshipThis work has been funded by the Spanish Ministerio de Economía y Competitividad under project TIN2016-77902-C3-2-P, and the European Regional Development Fund (ERDF-FEDER).es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectCluster analysis es_ES
dc.subjectContent-based recommendationes_ES
dc.subjectExpert findinges_ES
dc.subjectFiltering algorithmes_ES
dc.subjectUser profileses_ES
dc.titleAutomatic construction of multi-faceted user profiles using text clustering and its application to expert recommendation and filtering problemses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.knosys.2019.105337
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España