Afficher la notice abrégée

dc.contributor.authorVicente-López, Eduardo
dc.contributor.authorCampos Ibáñez, Luis Miguel 
dc.contributor.authorFernández Luna, Juan Manuel 
dc.contributor.authorHuete, Juan F.
dc.date.accessioned2021-03-26T12:12:28Z
dc.date.available2021-03-26T12:12:28Z
dc.date.issued2018-01-30
dc.identifier.citationJournal of Intelligent Information Systems volume 51, pages 597–620(2018)es_ES
dc.identifier.urihttp://hdl.handle.net/10481/67740
dc.description.abstractPersonalization generally improves the performance of queries but in a few cases it may also harms it. If we are able to predict and therefore to disable personalization for those situations, the overall performance will be higher and users will be more satisfied with personalized systems. We use some state-of-the-art pre-retrieval query performance predictors and propose some others including the user profile information for the previous purpose. We study the correlations among these predictors and the difference between the personalized and the original queries. We also use classification and regression techniques to improve the results and finally reach a bit more than one third of the maximum ideal performance. We think this is a good starting point within this research line, which certainly needs more effort and improvements.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish Andalusian “Consejerı́a de Innovación, Ciencia y Empresa” postdoctoral phase of project P09-TIC-4526, the Spanish “Ministerio de Economı́a y Competitividad” projects TIN2013-42741-P and TIN2016-77902-C3-2-P, and the European Regional Development Fund (ERDF-FEDER).es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectInformation retrieval es_ES
dc.subjectPersonalizationes_ES
dc.subjectQuery difficultyes_ES
dc.subjectPerformance predictiones_ES
dc.titlePredicting IR Personalization Performance using Pre-retrieval Query Predictorses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s10844-018-0498-3
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España