Show simple item record

dc.contributor.authorIrastorza Lorenzo, Ainhoa
dc.contributor.authorSánchez Porras, David 
dc.contributor.authorOrtiz Arrabal, Olimpia
dc.contributor.authorCampos Muñoz, Antonio Jesús 
dc.contributor.authorCampos Sánchez, Fernando 
dc.contributor.authorAlaminos Mingorance, Miguel 
dc.date.accessioned2021-03-25T11:39:11Z
dc.date.available2021-03-25T11:39:11Z
dc.date.issued2021-02-15
dc.identifier.citationIrastorza-Lorenzo, A.; Sánchez-Porras, D.; Ortiz-Arrabal, O.; de Frutos, M.J.; Esteban, E.; Fernández, J.; Janer, A.; Campos, A.; Campos, F.; Alaminos, M. Evaluation of Marine Agarose Biomaterials for Tissue Engineering Applications. Int. J. Mol. Sci. 2021, 22, 1923. [https://doi.org/10.3390/ijms22041923]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/67714
dc.description.abstractFive agarose types (D1LE, D2LE, LM, MS8 and D5) were evaluated in tissue engineering and compared for the first time using an array of analysis methods. Acellular and cellular constructs were generated from 0.3–3%, and their biomechanical properties, in vivo biocompatibility (as determined by LIVE/DEAD, WST-1 and DNA release, with n = 6 per sample) and in vivo biocompatibility (by hematological and biochemical analyses and histology, with n = 4 animals per agarose type) were analyzed. Results revealed that the biomechanical properties of each hydrogel were related to the agarose concentration (p < 0.001). Regarding the agarose type, the highest (p < 0.001) Young modulus, stress at fracture and break load were D1LE, D2LE and D5, whereas the strain at fracture was higher in D5 and MS8 at 3% (p < 0.05). All agaroses showed high biocompatibility on human skin cells, especially in indirect contact, with a correlation with agarose concentration (p = 0.0074 for LIVE/DEAD and p = 0.0014 for WST-1) and type, although cell function tended to decrease in direct contact with highly concentrated agaroses. All agaroses were safe in vivo, with no systemic effects as determined by hematological and biochemical analysis and histology of major organs. Locally, implants were partially encapsulated and a pro-regenerative response with abundant M2- type macrophages was found. In summary, we may state that all these agarose types can be safely used in tissue engineering and that the biomechanical properties and biocompatibility were strongly associated to the agarose concentration in the hydrogel and partially associated to the agarose type. These results open the door to the generation of specific agarose-based hydrogels for definite clinical applications such as the human skin, cornea or oral mucosa.es_ES
dc.description.sponsorshipHispanagar SA, Burgos, Spain, through CDTI, Ministry of Science and Innovation, Spain, Programa Operativo Plurirregional de Crecimiento Inteligente (CRIN) IDI-20180052es_ES
dc.description.sponsorshipISCIII thorough AES AC17/00013es_ES
dc.description.sponsorshipJunta de Andalucía PE-0395-2019es_ES
dc.description.sponsorshipSpanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+i) from Ministerio de Ciencia, Innovación y Universidades (Instituto de Salud Carlos III) FIS PI17/0391es_ES
dc.description.sponsorshipFondo Europeo de Desarrollo Regional ERDF-FEDER, European Union PI20/0317es_ES
dc.language.isoenges_ES
dc.publisherMdpies_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectAgaroseagarosees_ES
dc.subjectTissue engineeringes_ES
dc.subjectBiomaterialses_ES
dc.subjectBiocompatibilityes_ES
dc.subjectBiomechanical propertieses_ES
dc.titleEvaluation of Marine Agarose Biomaterials for Tissue Engineering Applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.3390/ijms22041923
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España