Mostrar el registro sencillo del ítem

dc.contributor.authorRosales Lombardo, Manuel César 
dc.date.accessioned2021-03-15T11:41:54Z
dc.date.available2021-03-15T11:41:54Z
dc.date.issued2021-04
dc.identifier.citationRosales, C. (2020). Stable and isoperimetric regions in some weighted manifolds with boundary. Nonlinear Analysis, 205, 112217. [https://doi.org/10.1016/j.na.2020.112217]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/67229
dc.description.abstractIn a Riemannian manifold with a smooth positive function that weights the associated Hausdorff measures we study stable sets, i.e., second order minima of the weighted perimeter under variations preserving the weighted volume. By assuming local convexity of the boundary and certain behavior of the Bakry–Émery– Ricci tensor we deduce rigidity properties for stable sets by using deformations constructed from parallel vector fields tangent to the boundary. As a consequence, we completely classify the stable sets in some Riemannian cylinders Ω × R with product weights. Finally, we also establish uniqueness results showing that any minimizer of the weighted perimeter for fixed weighted volume is bounded by a horizontal slice Ω × {t}.es_ES
dc.description.sponsorshipMINECO, Spain MTM2017-84851-C2-1-Pes_ES
dc.description.sponsorshipJunta de Andalucía European Commission FQM325es_ES
dc.language.isoenges_ES
dc.publisherPergamon Elsevier Science LTDes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectWeighted manifoldses_ES
dc.subjectRiemannian cylinderses_ES
dc.subjectIsoperimetric problemses_ES
dc.subjectStable setses_ES
dc.titleStable and isoperimetric regions in some weighted manifolds with boundaryes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.na.2020.112217
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España