Mostrar el registro sencillo del ítem
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
dc.contributor.author | García Gámez, Diego | |
dc.contributor.author | Zamorano García, Bruno | |
dc.contributor.author | Dune Collaboration | |
dc.date.accessioned | 2021-03-15T08:59:49Z | |
dc.date.available | 2021-03-15T08:59:49Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Abi, B., Acciarri, R., Acero, M. A., Adamov, G., Adams, D., Adinolfi, M., ... & Chiriacescu, A. (2020). Neutrino interaction classification with a convolutional neural network in the DUNE far detector. Physical Review D, 102(9), 092003. | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/67204 | |
dc.description.abstract | The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects. | es_ES |
dc.description.sponsorship | Fermi Research Alliance, LLC (FRA) DE-AC02-07CH11359 | es_ES |
dc.description.sponsorship | National Council for Scientific and Technological Development (CNPq) | es_ES |
dc.description.sponsorship | Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ) | es_ES |
dc.description.sponsorship | FAPEG, Brazil | es_ES |
dc.description.sponsorship | Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) | es_ES |
dc.description.sponsorship | Canada Foundation for Innovation | es_ES |
dc.description.sponsorship | Institute of Particle Physics, Canada | es_ES |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada (NSERC) | es_ES |
dc.description.sponsorship | CERN | es_ES |
dc.description.sponsorship | Ministry of Education, Youth & Sports - Czech Republic Czech Republic Government | es_ES |
dc.description.sponsorship | ERDF, European Union | es_ES |
dc.description.sponsorship | H2020-EU, European Union | es_ES |
dc.description.sponsorship | MSCA, European Union | es_ES |
dc.description.sponsorship | Centre National de la Recherche Scientifique (CNRS) | es_ES |
dc.description.sponsorship | French Atomic Energy Commission | es_ES |
dc.description.sponsorship | Istituto Nazionale di Fisica Nucleare (INFN) | es_ES |
dc.description.sponsorship | Portuguese Foundation for Science and Technology European Commission | es_ES |
dc.description.sponsorship | NRF, South Korea | es_ES |
dc.description.sponsorship | Comunidad de Madrid | es_ES |
dc.description.sponsorship | La Caixa Foundation | es_ES |
dc.description.sponsorship | Spanish Government | es_ES |
dc.description.sponsorship | State Secretariat for Education, Research and Innovation, Switzerland | es_ES |
dc.description.sponsorship | Swiss National Science Foundation (SNSF) | es_ES |
dc.description.sponsorship | Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) | es_ES |
dc.description.sponsorship | Royal Society of London | es_ES |
dc.description.sponsorship | UKRI/STFC, United Kingdom | es_ES |
dc.description.sponsorship | United States Department of Energy (DOE) | es_ES |
dc.description.sponsorship | National Science Foundation (NSF) | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | AMER PHYSICAL SOC | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.title | Neutrino interaction classification with a convolutional neural network in the DUNE far detector | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1103/PhysRevD.102.092003 |