Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Gámez, Diego 
dc.contributor.authorZamorano García, Bruno 
dc.contributor.authorDune Collaboration
dc.date.accessioned2021-03-15T08:59:49Z
dc.date.available2021-03-15T08:59:49Z
dc.date.issued2020
dc.identifier.citationAbi, B., Acciarri, R., Acero, M. A., Adamov, G., Adams, D., Adinolfi, M., ... & Chiriacescu, A. (2020). Neutrino interaction classification with a convolutional neural network in the DUNE far detector. Physical Review D, 102(9), 092003.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/67204
dc.description.abstractThe Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.es_ES
dc.description.sponsorshipFermi Research Alliance, LLC (FRA) DE-AC02-07CH11359es_ES
dc.description.sponsorshipNational Council for Scientific and Technological Development (CNPq)es_ES
dc.description.sponsorshipCarlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ)es_ES
dc.description.sponsorshipFAPEG, Braziles_ES
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)es_ES
dc.description.sponsorshipCanada Foundation for Innovationes_ES
dc.description.sponsorshipInstitute of Particle Physics, Canadaes_ES
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)es_ES
dc.description.sponsorshipCERNes_ES
dc.description.sponsorshipMinistry of Education, Youth & Sports - Czech Republic Czech Republic Governmentes_ES
dc.description.sponsorshipERDF, European Uniones_ES
dc.description.sponsorshipH2020-EU, European Uniones_ES
dc.description.sponsorshipMSCA, European Uniones_ES
dc.description.sponsorshipCentre National de la Recherche Scientifique (CNRS)es_ES
dc.description.sponsorshipFrench Atomic Energy Commissiones_ES
dc.description.sponsorshipIstituto Nazionale di Fisica Nucleare (INFN)es_ES
dc.description.sponsorshipPortuguese Foundation for Science and Technology European Commissiones_ES
dc.description.sponsorshipNRF, South Koreaes_ES
dc.description.sponsorshipComunidad de Madrides_ES
dc.description.sponsorshipLa Caixa Foundationes_ES
dc.description.sponsorshipSpanish Governmentes_ES
dc.description.sponsorshipState Secretariat for Education, Research and Innovation, Switzerlandes_ES
dc.description.sponsorshipSwiss National Science Foundation (SNSF)es_ES
dc.description.sponsorshipTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)es_ES
dc.description.sponsorshipRoyal Society of Londones_ES
dc.description.sponsorshipUKRI/STFC, United Kingdomes_ES
dc.description.sponsorshipUnited States Department of Energy (DOE)es_ES
dc.description.sponsorshipNational Science Foundation (NSF)es_ES
dc.language.isoenges_ES
dc.publisherAMER PHYSICAL SOCes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleNeutrino interaction classification with a convolutional neural network in the DUNE far detectores_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1103/PhysRevD.102.092003


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España