dc.contributor.author | Ritoré Cortés, Manuel María | |
dc.date.accessioned | 2021-02-19T11:15:37Z | |
dc.date.available | 2021-02-19T11:15:37Z | |
dc.date.issued | 2017-09-20 | |
dc.identifier.citation | Ritoré, M. (2021). Tubular neighborhoods in the sub-Riemannian Heisenberg groups. Advances in Calculus of Variations, 14(1), 1-36. [https://doi.org/10.1515/acv-2017-0011] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/66666 | |
dc.description.abstract | In the present paper we consider the Carnot–Carathéodory distance δE to a closed set E in the
sub-RiemannianHeisenberg groupsℍn, n ⩾ 1. Theℍ-regularity of δE is proved under mild conditions involving
a general notion of singular points. In case E is a Euclidean Ck submanifold, k ⩾ 2, we prove that δE is Ck
out of the singular set. Explicit expressions for the volume of the tubular neighborhood when the boundary
of E is of class C2 are obtained, out of the singular set, in terms of the horizontal principal curvatures of ∂E
and of the function ⟨N, T⟩/|Nh| and its tangent derivatives. | es_ES |
dc.description.sponsorship | European Union (EU)
Spanish Government
MTM2007-61919
MTM2013-48371-C2-1-P | es_ES |
dc.description.sponsorship | Junta de Andalucía
FQM-325 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Walter De Gruyter Gmbh | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Heisenberg group | es_ES |
dc.subject | Carnot–Carathéodory distance | es_ES |
dc.subject | tubular neighborhoods | es_ES |
dc.subject | Distance function | es_ES |
dc.subject | Singular set | es_ES |
dc.subject | Steiner’s formula | es_ES |
dc.title | Tubular neighborhoods in the sub-Riemannian Heisenberg groups | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1515/acv-2017-0011 | |
dc.type.hasVersion | VoR | es_ES |